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TrE following paper contains the investigation of the mass-motion of viscous and
imperfectly elastic spheroids, as modified by a relative motion of their parts, produced
in them by the attraction of external disturbing bodies; it must be regarded as
the continuation of my previous paper,* where the theory of the bodily tides of such
spheroids was given.

The problem is one of theoretical dynamics, but the subject is so large and complex,
that I thought it best, in the first instance, to guide the direction of the speculation
by considerations of applicability to the case of the earth, as disturbed by the sun
and moon.

In order to avoid an incessant use of the conditional mood, I speak simply of the
earth, sun, and moon ; the first being taken as the type of the rotating body, and the
two latter as types of the disturbing or tide-raising bodies. This course will be justi-
fied, if these ideas should lead (as I believe they will) to important conclusions with
respect to the history of the evolution of the solar system. This plan was the more
necessary, because it seemed to me impossible to attain a full comprehension of the
physical meaning of the long and complex formulas which occur, without having
recourse to numerical values ; moreover, the differential equations to be integrated were
so complex, that a laborious treatment, partly by analysis and partly by numerical
quadratures, was the only method that I was able to devise. Accordingly, the earth,
sun, and moon form the system from which the requisite numerical data are taken.

It will of course be understood that I do not conceive the earth to be really a
homogeneous viscous or elastico-viscous spheroid, but it does seem probable that the
earth still possesses some plasticity, and if at one time it was a molten mass (which is
highly probable), then it seems certain that some changes in the configuration of the
three bodies must have taken place, closely analogous to those hereafter determined.
And even if the earth has always been quite rigid, the greater part of the same effects
would result from oceanic tidal friction, although probably they would have taken
place with less rapidity.

* ¢ On the Bodily Tides of Viscous and Semi-elastic Spheroids,” &e., Phil. Trans. 1879, Part 1.
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448 MR. G. H. DARWIN ON THE PRECESSION OF A VISCOUS SPHEROILD,

As some persons may wish to obtain a general idea of the drift of the inquiry with-
out reading a long mathematical argument, I have adhered to the plan adopted in my
former paper, of giving at the end (in Part IIL.) a general view of the whole subject,
with references back to such parts as it did not seem desirable to reproduce. In order
not to interrupt the mathematical argument in the body of the paper, the discussion of
the physical significance of the several results is given along with the summary ; such
discussions will moreover be far more satisfactory when thrown into a continuous
form than when scattered in isolated paragraphs throughout the paper. I have tried,
however, to prevent the mathematical part from being too bald of comments, and to
place the reader in a position to comprehend the general line of investigation.

Before entering on analysis, it is necessary to give an explanation of how this
inquiry joins itself on to that of my previous paper.

In that paper it was shown that, if the influence of the disturbing body be expressed
in the form of a potential, and if that potential be expressed as a series of solid
harmonic functions of points within the disturbed spheroid, each multiplied by a simple
time harmonic, then each such harmonic term raises a tide in the disturbed spheroid,
which is the same as though all the other terms were non-existent. This is true,
whether the spheroid be fluid, elastic, viscous, or elastico-viscous. Further, the free
surface of the spheroid, as tidally distorted by any term, is expressible by a surface
harmonic of the same type as that of the generating term; and where there is a
frictional resistance to the tidal motion, the phase of the corresponding simple time
harmonic is retarded. The height of each tide, and the retardation of phase (or the
lag) are functions of the frequency of the tide, and of the constants expressive of the
physical constitution of the spheroid.

Each such term in the expression for the form of the tidally distorted spheroid may
be conveniently referred to as a simple tide.

Hence if' we regard the whole tide-wave as a modification of the equilibrium tide-
wave of a perfectly fluid spheroid, it may be said that the effect of the resistances to
relative displacement is a disintegration of the whole wave into its constituent simple
tides, each of which is reduced in height, and lags in time by its own special amount.
In fact, the mathematical expansion in surface harmonics exactly corresponds to the

physical breaking up of a single wave into a number of secondary waves.

It was remarked in the previous paper,* that when the tide-wave lags the attraction
of the external tide-generating body gives rise to forces on the spheroid which are not
rigorously equilibrating. Now it was a part of the assumptions, under which the
theory of ‘viscous and elastico-viscous tides was formed, that the whole forces which
act on the spheroid should be equilibrating ; but it was there stated that the couples
arising from the non-equilibration of the attractions on the lagging tides were pro-
portional to the square of the disturbing influence, and it was on this account that
they were neglected in forming that theory of tides. The investigation of the effects

* “Bodily Tides,” &e. Sec. 5.
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which they produce in modifying the relative motion of the parts of the spheroid, that
is to say in distorting the spheroid, must be reserved for a future occasion.*

The effects of these couples, in modifying the motion of the rotating spheroid as a
whole, affords the subject: of the present paper.

According to the ordinary theory, the tide-generating potential of the disturbing
body is expressible as a series of LEGENDRE'S coefficients ; the term of the first order
is non-existent, and the one of the second order has the type $cos?—4. Throughout
this paper the potential is treated as though the term of the second order existed alone,
but at the end it is shown that the term of the third order (of the type § cos®—73 cos)
will have an effect which is fairly negligeable compared with that of the first term.

In order to apply the theory of elastic, viscous, and elastico-viscous tides, the first
task is to express the tide-generating potential in the form of a series of solid harmonics
relatively to axes fixed in the spheroid, each harmonic being multiplied by a simple
time harmonic. |

Afterwards it will be necessary to express that the wave surface of the distorted
spheroid is the disintegration into simple lagging tides of the equilibrium tide-wave of
a perfectly fluid spheroid. '

The symbols expressive of the disintegration and lagging will be kept perfectly
general, so that the theory will be applicable either to the assumptions of elasticity,
viscosity, or elastico-viscosity, and probably to any other continuous law of resistance
to relative displacement. It would not, however, be applicable to such a law as that
which is supposed to govern the resistance to slipping of loose earth, nor to any law
which assumes that there is no relative displacement of the parts of the solid, until
the stresses have reached a definite magnitude.

After the form of the distorted spheroid has been found, the couples which arise
from the attraction of the disturbing body on the wave surface will be found, and the
rotation of the spheroid and the reaction on the disturbing body will be considered.

This preliminary explanation will, I think, make sufficiently clear the objects of the
rather long introductory investigations which are necessary.

PART I
§ 1. The tide-generating potential.

The disturbing body, or moon, is supposed to move in a circular orbit, with a
uniform angular velocity —£2. The plane of the orbit is that of the ecliptic ; for the
investigation is sufficiently involved without complicating it by giving the true
inclined eccentric orbit, with revolving nodes. [I hope however in a future paper to
consider the secular changes in the inclination and eccentricity of the orbit and the
modifications to be made in the results of the present investigation. ]

* See the next paper “ On Problems connected with the Tides of a Viscous Spheroid.” Part I.
3 M 2
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n
Let m be the moon’s mass, ¢ her distance, and T__a_

Let XYZ (Plate 36, fig. 1) be rectangular axes fixed in space, XY being the ecliptic.

Let M be the moon in her orbit moving from Y towards X, with an angular
velocity £2.

Let ABC be rectangular axes fixed in the earth, AB being the equator.
Let 7, ¥ be the coordinates of the pole C referred to XYZ, so that ¢ is the obliquity

g d . .
of the ecliptic, and »d}lg the precession of the equinoxes.

Let 1, 6, ¢ be the polar coordinates of any point P in the earth referred to ABC,
as indicated in the figure.

Let oy, 0y, og be the component angular velocities of the earth about the instan-
taneous positions of ABC.
Then we have, as usual, the geometrical equations,

i . D
o = —w, SIN X+ o, COS X
. . A
= sint=—w, cos xy—w, siny > . (1)
Z ;
(X+ g7 COST= @, J

d d . "
g;, so that 7956=H cot t—w3. ™

Now the earth rotates with a negative angular velocity, that is from B to A; therefore

Let T cosec ¢ be the precession of the equinoxes, or

if we put “X—n, nis equal to the true angular velocity of the earth -+1I cot 7. But for

purposes of numerical calculation 7 may be taken as the earth’s angular velocity; and
care need merely be taken that inequalities of very long period are not mistaken for
secular changes.

Let the epoch be taken as the time when the colure ZC was in the plane of ZX,
when x was zero and the moon on the equator at Y. It will be convenient also to assume
later that there was also an eclipse at the same instant. A number of troublesome
symbols are thus got rid of, whilst the generality of the solution is unaffected.

Then by the previous definitions we have y=nt, MN=n¢, NR=7 ——RD:—; —(p—x).

Now if w be the mass of the homogeneous earth per unit volume, then the tide-
generating gravitation potential V of the moon, estimated per unit volume, at the
point 7, 6, ¢ or P in the earth is, by the well-known formula, V=wrr(cos* PM—3).

This is the function on which the tides depend, and as above explained, it must be

% The limit of II cob ¢ is still small when < is zero. In considering the precession with one disturbing
body only, TI cosec 4 is merely the precession due to that body; but afterwards when the effect of the sun
is added it must be taken as the full precession.
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expanded in a series of solid harmonics of 7, 0, ¢, each multiplied by a simple time
harmonic, which will involve n and £.

For brevity of notation nt, 2¢ are written simply 7, £2, but wherever these symbols
occur in the argument of a trigonometrical term they must be understood to be multi-
plied by ¢ the time.

We have
cos PM= gin 6 cos MR+ cos € sin MR sin MRQ
and ,
cos MR= cos MN cos NR+ sin MN sin NR cos ¢
= cos £2 sin (¢p—n)+ sin £2 cos (p—n) cos ¢
also
sin MR sin MRQ= sin MQ= sin 2 sin ¢
Therefore

cos PM = sin 0 sin (¢p—n) cos 24 sin 0 cos (¢—n) sin £2 cos 1+ cos @ sin £2 sin ¢
=% sin O{sin [ d—(n—202) ]+ sin[p—(n+2)]}

+ 4 sin @ cos ¢{sin[p— (n—1a0)]— sin[p—(n+£)]} + cos f sin 2 sin ¢
Let

[ SR

= co8 g, g= sin
Then
cos PM=p?sin 0 sin[¢— (n—1»0) |42pq cos 0 sin 2+¢°sin O sin[p—(n+02)] . (2)
Therefore
- cos® PM=4p"sin® 0{1— cos [2¢—2(n—10) |} +2p%® cos® (1 — cos 202)
+4¢* sin® 0{1— cos [2¢—2(n+02)]} + 2p% sin 6 cos O{cos (¢—n) — cos [p—(n—20) ]}
+2pg3 sin 6 cos 0 {cos [p—(n+202)]|— cos (p—n)} +p°¢® sin® O{cos 22— cos (2¢—2n)}

Then collecting terms, and noticing that

L(p*+q") sin® 04 2p°¢* cos® O=%+3(1 —6p**) (3 — cos® §)
we have

v = cos? PM — %

wrr?
= —4sin®{ p*cos[ 29— 2(n—02) |4 2p°¢* cos| 2¢—2n |4qcos[ 2¢—2(n+2) |}
— 2sin fcos §{ p3qcos| p— (n—202) |— pg( p*—¢*) cos (p—n) — pg>cos[ p— (n+202) |}
+(F—cos’0) {8p*Pcos2n+4(1—6p%D} . . . . . . . . . . oL (8)

Now if all the cosines involving ¢ be expanded, it is clear +hat we have V consisting
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of thirteen terms which have the desired form, and a fourteenth which is independent
of the time.

It will now be couvenient to introduce some auxiliary functions, which may be
defined thus,

D (2n) =4 p* cos 2(n—0)+p*¢* cos 2n+Lg* cos 2(n+0)
W(n) =2p% cos (n—20) —2pq(p*—¢°) cos n—2pq®cos (n+20) ». . . (4)
X(20)=3p%¢® cos 202

& (2n—4m), V(n—1L7), X(20—37) are functions of the same form with sines replacing
cosines. When the arguments of the functions are simply 2n, n, 202 respectively, they
will be omitted and the functions written simply ®, ¥, X; and when the arguments
are simply 2n—4%7, n—3m, 20—%m, they will be omitted and the functions written @,
v, X'. These functions may of course be expanded like sines and cosines, e.g.,
W(n—o)="1V cos o+ sin & and ¥ (n—a)=""" cos a—V sin a.

If now these functions are introduced into the expression for V, and if we replace
the direction cosines sin @ cos ¢, sin 0 sin ¢, cos 6 of the point P by &, », {, we have

Y () o2 — EY— LY HE P2 X AL =) - (5)

E—n® 28y, €0 i, HE+1n*—20) are surface harmonics of the second order, and
the auxiliary functions involve only simple harmonic functions of the time. Hence we
have obtained V in the desired form.

We shall require later certain functions of the direction cosines of the moon referred
to A B C expressed in terms of the auxiliary functions. The formation of these
functions may be most conveniently done before proceeding further.

Let , v, z be these direction cosines, then

cos PM=wxé+yn+2(
whence
cos® PM—2= (xé+yn—+20>—31(E+n*+ 1)
=8 =)+ (P — 3+ @Y 2l 2lEat2bwy . (6)

But from (5) we have on rearranging the terms,

cos? PM——:

EZ{—<1>+%X+%§—(1—610292)}+n2{®+%X+%(1—629292)}+52{—%X—%(l—fip“’qz)}
— LW —2LELP—2&p® . . . L . L L (B)
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Then equating coefficients in these two expressions (53") and (6)

P —fm 0t X (1)
P—5= O+iX+5(1—6p°¢)
F—y=  —3X—5(1—=06p%)
Whence .
Por= OHX+=67)
P—at=  OP—X—L(l—6p%?
T P— = —20
also > (7)
ye=—3 v’
re=—%¥
xy=— @ J

Thege six equations (7) are the desired functions of , 7, # in terms of the auxiliary
functions.

§ 2. The form of the spheroid as tidally distorted.

The tide-generating potential has thirteen terms, each consisting of a solid harmonic
of the second degree multiplied by a simple harmonic function of the time, viz. : three
in ®, three in @', three in ¥, three in ¥, and one in X. The fourteenth term of V
can raise no proper tide, because it is independent of the time, but it produces a
permanent increment to the ellipticity of the mean spheroid.

Hence according to our hypothesis, explained in the introductory remarks, there
will be thirteen distinct simple tides; the three tides corresponding to @ may
however be compounded with the three in ®, and similarly the ¥’ tides with the
¥ tides. Hence there are seven tides with speeds™ [2n—24£2, 2n, 2042027, [n—20,
n, n+207, [202], and each of these will be retarded by its own special amount.

The ® tides have periods of nearly a half-day, and will be called the slow, sidereal,
and fast semi-diurnal tides, the ¥ tides have periods of nearly a day, and will be called
the slow, sidereal, and fast diurnal tides, and the X tide has a period of a fortnight,
and is called the fortnightly tide.

The retardation of phase of each tide will be called the “lag,” and the height of
each tide will be expressed as a fraction of the corresponding equilibrium tide of a
perfectly fluid spheroid. Then the following schedule gives the symbols to be
introduced to express lag and reduction of tide :—

* The useful term “speed ” is due, I believe, to Sir Wintiam TrHoMsON, and is much wanted to indicate the
angular velocity of the radius of a circle, the inclination of which to a fixed radius gives the argument of
a trigonometrical term. It will be used throughout this paper to indicate v, as it occurs in expressions of
the type cos (vi+7).
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Semi-diurnal. Diurnal. Fortnightly.
. Slow Sidereal Fast Slow Sidereal Fast
Tide . . .|@n—202). (2n). |@n+202).| (n—20). (n). (n+20). (202).
Height . . E, E 1, I E, s L, L
Lag . . . 2¢, 2€ 2¢, i €, € €y 2¢”
|

The E’s are proper fractions, and the €'s are angles.

Let r=a-+o be the equation to the surface of the spheroid as tidally distorted, «
being the radius of the mean sphere,—for we may put out of account the permanent
equatorial protuberance due to rotation, and to the non-periodic term of V.

It is a well known result that, if wr*S cos (vt+7%) be a tide-generating potential,
estimated per unit volume of a homogeneous perfectly fluid spheroid of density w,
(S being of the second order of surface harmonics), then the equilibrium tide due to this

2
potential is given by o= %S cos (vt+n). If we write g:gg this result may be

5a’

written g =§ cos (vt+m).

Now consider a typical term—say one part of the slow semi-diurnal term—of the
tide-generating potential, as found in (3): it was

—wr*ryp* sin® 0 cos 2¢ cos 2(n—12).

The equilibrium value of the corresponding tide is found by putting ;—Z equal to this
expression divided by wrg.

Then if we suppose that there is a frictional resistance to the tidal motion, the tide

will lag and be reduced in height, and according to the preceding definitions the
corresponding tide of our spheroid is expressed by

2: —;El%zp4‘ sin? @ cos 2¢ cos [2(n—02)—2e |

All the other tides may be treated in the same way, by introducing the proper K’s
and €.
Thus if we write

o, =E, 1p*cos (2n—20—2¢))+ Ep*s® cos (2n—2¢)+ L, £q* cos (2n4 20— 2¢,)
v, =F2p*qcos(n—20—¢ ) — E'2pq( p*—¢®) cos (n—¢€) — B'y2pg°cos (n+4-20—¢€,) + (8)
X, =FE"3p% cos (202 —2¢")

and if in the same symbols accented sines replace cosines, then, by comparison with (5),
we see that
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1 — (£ =)D 2P — £~V A HEH 20K, . L (9)

T

This is merely a symbolical way of writing down that every term in the tide-
generating potential raises a lagging tide of its own type, but that tides of different
speeds have different heights and lags.

This same expression may also be written

1 = — {0~ IX} 2 — &, — X} — LIX — 2V — 2LV —2E0®, . . . ()

a

Then if we put

TO

c—b= @ +X
a—c= b —X,
b—a=—2®,
c= 32X, e (1))
d= —31v’
e= —3V,
f= — @, J
It is clear that
U A —by—clt-2dnlt2elé+2fey. . . . . . (11)

‘Whence
Lt~ o= — (o= bt — Al — L) —efr+F 16}

o
S =

N!‘ﬁ
~

(é%_gdig)gz_{<a_c);f—em-fz)—fnudsn} e (12)

(£ =g o= — {(b—a)p—F(E =) —dLE +enl3 |

T

¥i=

Of which expressions use will be made shortly.

§ 8. The couples about the axes A, B, C caused by the moon’s attraction.

The earth is supposed to be a homogeneous spheroid of mean radius @, and mass w
per unit volume, so that its mass M=%mwe’. When undisturbed by tidal distortion
1t is a spheroid of revolution about the axis C, and its greatest and least principal
moments of inertia are C, A. Upon this mean spheroid of revolution is superposed
the tide-wave o.

The attraction of the moon on the mean spheroid produces the ordinary precessional
couples 27(C—A)yz, —27(C—A)zx, 0 about the axes A, B, C respectively; besides

MDCCCLXXTX, 3 N
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these there are three couples, I, J¥, 2 suppose, caused by the attraction on the
wave surface o.

As it is only desired to determine the corrections to the ordinary theory of preces-
sion, the former may be omitted from consideration, and the attention confined to the
determination of 3, J¥Y, .

The moon will be treated as an attractive particle of mass m.

Now ¢ as defined by (9) is a surface harmonic of the second order; hence by the
ordinary formula in the theory of the potential, the gravitation potential of the tide-

3
wave at a point whose coordinates referred to A, B, C are r€, m, r{ is —mvcc( > o or
_3_21160
5 73

mMa/ d . .
particle of mass m, situated at that point, are 3 :4' a( 4 C——) ., &c.  Then if this

o. Hence the moments about the axes A, B, C of the forces which act on a

particle has the mass of the moon; if 7 be put equal to ¢, the moon’s distance; and if
& 7, L be replaced in o by @, ¥, z (the moon’s direction cosines) in the previous expres-

sions, it is clear that — Mow( = dg>’ &c., &ec., are the couples on the earth caused

by the moon’s attraction.

These reactive couples are the required 3, J¥¥, 3.

Hence referring back to (12) and remarking that $Ma?=C, the earth’s moment of
inertia, we see at once that

%=—[(c—b) yz—d(y*—7%) —exy+fax | )
j]_;l_l=2;2[(a_c)m_e( F—a’) —fyetdwy] ¢ (13)
T=" =)oy (e —y) —deateye]

Where the quantities on the right-hand side are defined by the thirteen equations
(7) and (10). '

I shall confine my attention to determining the alteration in the uniform precession,
the change in the obliquity of the ecliptic, and the tidal friction; because the nutations
produced by the tidal motion will be so small as to possess no interest.

In developing 3 and ¥V I shall only take into consideration the terms with argu-
ment 7, and in §B only constant terms; for it will be seen, when we come to the
equations of motion, that these are the only terms which can lead to the desired end.

§ 4. Development of the couples I and J¥V.

Now substitute trom (7) and (10) in the first of (18), and we have

%27’

57 — LD AX IV LV B X +F(1—6p%)} — 3T+ ¥ . (14)
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A number of multiplications have now to be performed, and only those terms which
contain the argument n to be retained.

The particular argument n can only arise in six ways, viz.: from products of terms
with arguments 2(n—), n—20; 20, n; 2(n+0), n4+20; n—20, 20; n+20, 202 and
from terms of argument n multiplied by constant terms.

If ® and ¥, and @’ and ¥’ be written underneath one another in the various com-
binations in which they occur in the above expression, it will be obvious that the
desired argument can only arise from terms which stand one vertically over the other;
this renders the multiplication easier. The ¥, X products are comparatively easy.

Then we have

() =@V =—3] —E,p’gsin (n—2¢)42Ep**(p*—¢?) sin (n—2¢) + E, pq7sin (n—2¢,) ]
(8) +A¥® =+i[— B, plgsin (n+-¢,) +2 B (5 — )i (n-+€)+ s pesin (¢
y) —3¥.® =same as (B)

+1®° ¥ =same as (@)

—3X ¥ =—4[E'6p°¢® sin (n—2¢") — E"6p*q° sin (n-+2¢”) ]

+L1V' X =4[ F6p°¢° sin (n—e')) — ' y6p°° sin (n—¢',) ]

+3.(1 =6p°¢") = — 1 2pq(p*—¢°) (1 — 6p°¢’) sin (n—¢')

TRESS
N i N

Now put %:F sin n+G cosn.  Then if the expressions (), (8) ... ({) be added

up when n=7—;, and the sum multiplied by -2—;—, we shall get F'; and if we perform the

same addition and multiplication when n=0, we shall get G.

In performing the first addition the terms (o) (8) do not combine with any other,
but the terms (8), (y), (), () combine.

Now

— 307 +Ep°° = —4p°(p*—3¢°)
PP (P =) —3p9(p* — ) (1 = 6p°¢") = —pq(p* — ) (P +¢*— 6p%?)
g —3P° P =—4pg*(3p°—¢°)
— 3P+’ == (P — ).
Hence

F: r_
q
8, p7q cos 2¢,— EpPq*(p®—q?) cos 2e— L, pq" cos 2,
—3Lp°q(p*—3¢°) cos€1— 5 E'pq(p*—¢°) (p"+¢* — 6p°¢%) cos€ — L By pg®(3p>—¢°) cos €,
—§E'pP(p*—q) cos 2" . . . . . . . . L . . L . .. .. (15)
3 N 2
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Again for the second addition when n=0, we have

— 50— 8PP = —%p" (P +39°)
PP =) +ipe(PP =) (L= 6p°¢) =5pg(p*—¢°)°
P20+ 50" =4p* 3p*+¢)
PP HEP°P=3p",
So that
G+g§= — LB, pq sin 2¢,+ Ep*g*(p*—¢?) sin 2e+L F,pq sin 2¢,
—$E10°q(p*+3¢%) sin €|+ Epg(p*—¢°)° sin € + 5 E,pgP(3p°+¢7) sin €
FEEPPsin2’ . . . . . . . e . .. (16)
And

Qg

=Fsinn4+Geoosn . . . . . . . .. (17)

To find M it is only necessary to substitute 7‘1—7—;- for m, and we have

‘%?—:—Fcosn+(}sinn e e e (19)

Now there is a certain approximation which gives very nearly correct results and
which simplifies these expressions very much. It has already been remarked that the
three ®-tides have periods of nearly a half-day and the three W-tides of nearly a day,
and this will continue to be true so long as £ is small compared with » ; hence it may
be assumed with but slight error that the semi-diurnal tides are all retarded by the
same amount and that their heights are proportional to the corresponding terms in the
tide-generating potential. That is, we may put ¢=e¢=¢ and E,=F,=FE. The
similar argument with respect to the diurnal tides permits us to put ¢ ,=¢,=¢ and
.\ =FK,=F.

Then introducing the quantities P=p’—¢*= cosi, @=2pqg= sin+ and observing
that

Lp'q—p*(p*— %) — Lpq" = 1pg (P — )P+ PP+ ¢) — 20° (PP —¢*) |=4 PR(1 — 2"

1p°9(p*—3¢") +4pq(p*— ) (p*+¢* —6p°¢") +5p¢* (3 p*— ") =pe(P*— *)(1 — 6 p°¢)
=1PQ(1—1Q)

1pPq(p*+3¢) —Lpq(p°—4*)> = 3pg°(3p*+ *) =4pe (P’ — @) (L +2p° — 1+ 4p°®) =3 PQ*

we have,
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T __;% PR(1—20?) cos 2¢e—E' PQ(1—3Q?) cos € —3E" P cos 2¢”

lﬁ

(19)

G+ —3EPQ(1—5@% sin 2¢e—3 ' P sin ¢ +3E”(Q sin 2¢”

zﬁvl“’°

§ 5. Development of the couple §P.

In the couple § about the axis of rotation of the earth we only wish to retain non-
periodic terms, and these can only arise from the products of terms with the same
argument.

By substitution from (7) and (10) in the last of (13)

ﬁ 277

5 =200 — 20’ P— IV THIv Y . . (20)

pA

Then as far as we are now interested,

200" =—20' d=F L1p®sin 2¢, -+ Ep'¢*sin 2e+ F, Lq¢° sin 2e,
— iV Y= JOV=F §p'¢’sin €+ ELp(p*—¢°) sin € -+ B, Lp%gf sin €

Hence

2

Ag'——%—- 1P° sin 2e, 4 E4dp'q* sin 2e+ F,q° sin 2e,
+E120°¢ sin €+ E2p°(p*—¢*)? sin € + E'2p%sin e, . . . (21)

If as in the last section we group the semi-diurnal and diurnal terms together and
put £,=FE,=E, &c., and observe that

P H4pt 4P = (p*+ ")+ 20" = (1 —§Q°) -+ 1 Q*= P+ 3
20°C +2p° (PP = PP 20’ = 4P p*+ ' — PPl = (1 —50Y),
then
5?—~—E(P2+3Q4) sin 2 EQU—3Q) sine . . . . (22)

§ 6. The equations of motion of the carth abouts its centre of inertic.

In forming the equations of motion we are met by a difficulty, because the axes
A, B, C are neither principal axes, nor can they rigorously be said to be fixed in the
earth. But M. LiouviLLe has given the equations of motion of a body which is
changing its shape, using any set of rectangular axes which move in any way with
reference to the body, except that the origin always remains at the centre of inertia.
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If A, B, C, D, E, F be the moments and products of inertia of the body about these
axes of reference at any time ; H,, H,, H; the moments of momentum of the motion
of all the parts of the body relative to the axes; o, @, w; the component angular
velocities of the axes about their instantaneous positions, the equations may be written

1
éi(Awl—sz-—Ewg—l— H,)+D(e*—0%)+(C—B)w,w;+ Fo,0, —Eo,o,
+o,H;—eH=L . . . ¢ . . . . . (23)

and two other equations found from this by cyclical changes of letters and suffixes.*

Now in the case to be considered here the axes A, B, C always occupy the average
position of the same line of particles, and they move with very nearly an ordinary
uniform precessional motion. Also the moments and products of inertia may be
written A4a/, B4+, C+c, d, ¢, {, where a’, b, ¢/, d’, ¢/, { are small periodic
functions of the time and a’+b’-+c¢'=0, and where A, B, C are the principal moments
of inertia of the undisturbed earth, so that B is equal to A.

Now the quantities a/, b’, &c., have in effect been already determined, as may be
shown as follows : By the ordinary formulat the force function of the moon’s action on

the earth is %53+T<A—+;io— >, where I is the moment of inertia of the earth about

the line joining its centre to the moon, and is therefore
=Ax?+ B+ CP a2+ by 42— 2d"yz — 2€ 20— 2f xy.

But the first three terms of I only give rise to the ordinary precessional couples, and
a comparison of the last six with (11) and (13) shows that

— e —

Also in the small terms we may ascribe to w, w,, w, their uniform precessional values,
Viz. : o= —1I cos 1, wy=—1I sIn 7N, wg= 7.

When these values are substituted in (23), we get some small terms of the form
a/TI? sin n, and others of the form a'TIn sin 7 ; both these are very small compared to the
terms in 3 and ¥ -—the fractions which express their relative magnitude being
112 IIn
~ and -

There is also a term —IIH, sin n, which I conceive may also be safely neglected, as
also the similar terms in the second and third equations.

It is easy, moreover, to show that according to the theories of the tidal motion

of a homogeneous viscous spheroid given in the previous paper, and according to

* Rours’s ¢ Rigid Dynamics’ (first edition only), p. 150, or my paper in the Phil. Trans. 1877, Vol. 167,
p- 272. The original is in LiouviiLe’s Journal, 2nd series, vol. iii., 1858, p. 1.
t Rourr’s ‘Rigid Dynamics,” 1877, p. 495.
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Sir Wirriam THOoMSON’S theory of elastic tides, H, H,, H; are all zero, Those theories
both neglect inertia but the actuality is not likely to differ materially therefrom.
Thus every term where o, and w, occur may be omitted and the equations reduced to

A% (C—Baw, +nls wﬁ%ﬁﬁwm=%“
Bdw2+(A C)w3w1+'n 7@26+—~—72H1—-m - (29)
dw {H

G+ B=A)ow, +% =R

As before with the couples, so here, we are only interested in terms with the argument
n in the small terms on the left-hand side of the first two of equations (24), and in
non-periodic terms in the last of them.

Now for each term in the moon’s potential, as developed in Section 1, there is (by
hypothesis) a corresponding co-periodic flux and reflux throughout the earth’s mass,
and therefore the H,, H, H; must each have periodic terms corresponding to each
term in the moon’s potential. Hence the only term in the moon’s potential to be con-
sidered is that with argument n, with respect to H, and H, in the first two equations ;
and H; may be omitted from the third as being periodic.

Suppose then that H, was equal to % cos n-4-%"sin n, then precisely as we found ¥

from ¥ by writing n—;—r for n we have Hy=hsin n—h"cosn. Thus (——+nH2_.O

%—?@H =0, and the H’s disappear from the first two equations.

Next retaining only terms in argument » in d’ and ¢, we have from (10)

e'=C- E 'pq(p*—q®) cos (n—¢), d’=CéE’29g(p2—g2) sin (n—¢’)

ad’ .
=0, — —ne'=0, and these terms also disappear.

Lastly, put B=A, and our equations reduce simply to those of KurEr, viz. :

A% (O Ao, =E |
(=Moo =8 + . . . ... (25)
dag _

Cdt =4 J

Now #2 is small, and therefore w; remains approximately constant and equal to —n
for long periods, and as C—A is small compared to A, we may put w;=—n in the first
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two equations. But when C—A is neglected compared to C, the integrals of these
equations are the same as those of

do,_ 3 do, B do,

G0 @doC’ a o (26)

apart from the complementary function, which may obviously be omitted. The two
former of (26) give the change in the precession and the obliquity of the ecliptic, and
the last gives the tidal friction.

§ 7. Precession and change of obliquity.

Then by (17), (18), and (26) the equations of motion are

d .
%: I sin n-+G cos n jl
. (2
dw, . ’ ( 7)
—!=—F cos n+Gsinn I
dt
and by integration
1 . 1 .
m1=7;[—F cos n+G sin n}, wgzq—t[-—F sinn—Geosn] . . . . (28)
But the geometrical equations (1) give
di .
—-== — ) SIN N, COS 7
dt
A . .
n SIn 2= — ), COS N—w, SiN 7
Therefore, as far as concerns non-periodic terms,
di__ Gr A .
a="w Mmz—n e 1))

If we wish to keep all the seven tides distinct (as will have to be done later), we
may write down the result for %and % from (15) and (16).

But it is of more immediate interest to consider the case where the semi-diurnal
tides are grouped together, as also the diurnal ones. In this case we have by (19)

. 2
dEZ—;mn{%PQ(l—%QQ) E sin 2e+3PQPE sin € —$Q°E”"sin 26"} . . . (80)
and since sin 1=Q

W_T T AP(1—§Q)E cos 2e— P(1—§Q)E cos ¢~ PQE" cos 2} . (31)
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In these equations P and @ stand for the cosine and sine of the obliquity of the
ecliptic.

Several conclusions may be drawn from this result.

If ¢, €, € are zero the obliquity remains constant.

Now if the spheroid be perfectly elastic, the tides do not lag, and therefore the
obliquity remains unchanged; it would also be easy to find the correction to the
precession to be applied in the case of elasticity.

It is possible that the investigation is not, strictly speaking, applicable to the case
of a perfect fluid; I shall, however, show to what results it leads if we make the appli-
cation to that case. Sir Wirrram TromsoN has shown that the period of free vibration
of a fluid sphere of the density of the earth would be about 1 hour 84 minutes.* And
as this free period is pretty small compared to the forced period of the tidal oscillation,
it follows that F, E', I, will not differ much from unity. Then putting them equal

“to unity, and putting e, €, € zero, since the tides do not lag, we find that the obliquity
remains constant, and

9

d T - 7> . . o
}';’;= ——@—;;P(l —3= ——%EL cosi(l—3sin®s) . . . . . (32)

This equation gives the correction to be applied to the precession as derived from the
assumption that the rotating spheroid of fluid is rigid. This result is equally true if

all the seven tides are kept distinct. Now if the spheroid were rigid its precession

would be ;L; cos 2, where ¢ is the ellipticity of the spheroid.

b Bl
R . . " . . . n-a "W
The ellipticity of a fluid spheroid rotating with an angular velocity 2 is § 5 5=

g ’
but besides this, there is ellipticity due to the non-periodic part of the tide-generating
potential. '

By (8) § 1 the non-periodic part of V is Swr?(3— cos® 0)(1—6p¢?); such a disturb-

ing potential will clearly produce an ellipticity %é( 1—6p%g?).

2
If therefore we put eo=%7—;—, and remember that 6p%®*=3 sin®7, we have,

T . “
e=e,+4 r((1 —3§sin?e)

Hence if the spheroid were rigid, and had its actual ellipticity, we should have

dr  Te, " 7 . a e o ,
‘Lt =—cos t-}4 —cosi(l—3Fsin~e). . . . . . . (32
a9 ta an cos (1 —3 ) (82)

* Phil. Trans., 1863, p. 608.
MDCCCLXXIX. 3 0
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Adding (32') to (32), the whole precession is

f_z_‘\k_"T_co . Y YU
T 08T (327)

We thus see that the effect of the non-periodic part of the tide-generating potential,
which may be conveniently called a permanent tide, is just such as to neutralise the
effects of the tidal action. The result (82”) may be expressed as follows:—

The precession of a flurd spheroid s the same as that of a rigid one which has an
ellipticity equal to that due to the rotation of the spheroid.

From this it follows that the precession of a fluid spheroid will differ by little from
that of a rigid one of the same ellipticity, if the additional ellipticity due to the non-
periodic part of the tide-generating influence is small compared with the whole
ellipticity.

Sir Witriam TroMsoN has already expressed himself to somewhat the same effect

in an address to the British Association at Glasgow.®

2
. w . . . T
Since eo=%-g~, the criterion is the smallness of et

. . T . TE .
It may be expressed in a different form; for prlL small when s small compared

. TC . . . . . .
with e, and s the reciprocal of the precessional period expressed in days. Hence

the criterion may be stated thus: The precession of a fluid spheroid differs by little
JSrom that of a rigid one of the same ellipticity, when the precessional period of the
spheroid expressed in terms of its rotation is large compared with the reciprocal of
s ellipticity.

In his address, Sir WirLiam TrHoMsON did not give a criterion for the case of a fluid
spheroid without any confining shell, but for the case of a thin rigid spheroidal shell
enclosing fluid he gave a statement which involves the above criterion, save that the
ellipticity referred to is that of the shell itself; for he says, ¢ The amount of this
difference (in precession and nutation) bears the same proportion to the actual precession
or nutation as the fraction measuring the periodic speed of the disturbance (in terms
of the period of rotation as unity) bears to the fraction measuring the interior ellipticity
of the shell.”

This is, in fact, almost the same result as mine.

This subject is again referred to in Part III. of the succeeding paper.

* See ¢ Nature,” September 14, 1876, p. 429. The above statement of results, and the comparison with
Sir Wrriam Tuomson’s criterion was added to the paper on September 17, 1879.
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§ 8. The disturbing action of the sun.

Now suppose that there is a second disturbing body, which may be conveniently
called the sun.*

* Tt is not at first sight obvious how it is physically possible that the sun should exercise an influence
on the moon-tide, and the moon on the sun-tide, so as to produce a secular change in the obliquity of the
ecliptic and to cause tidal friction, for the periods of the sun and moon about the earth are different. It
seems, therefore, interesting to give a physical meaning to the expansion of the tide-generating potential ;
it will then be seen that the interaction with which we are here dealing must occur.

The expansion of the potential given in Section 1 is equivalent to the following statement: —

The tide-generating potential of a moon of mass m, moving in a circular orbit of obliquity + at a
distance ¢, is equal to the tide-generating potential of ten satellites at the same distance, whose orbits,
masses, and angular velocities are as follows :—

1. A satellite of mass m cos? %, moving in the equator in the same direction and with the same angular

velocity as the moon, and coincident with it at the nodes. This gives the slow semi-diurnal tide of
speed 2(n—Q). )
2. A satellite of mass m sint %, moving in the equator in the opposite direction from that of the moon,

but with the same angular velocity, and coincident with it at the nodes. This gives the fast semi-dinrnal
tide of speed 2(n+ Q). ) )

3. A satellite of mass m 2 sin? %cos‘z %, fixed at the moon’s node. This gives the sidereal semi-diurnal
tide of speed 2n. ) )

4. A repulsive satellite of mass —m.2sin -;- cos? %, moving in N. declination 45° with twice the moon’s

angular velocity, in the same direction as the moon, and on the colure 90° in advance of the moon, when
she is in her node. .

5. A satellite of mass m sin ¢ cos? %—, moving in the equator with twice the moon’s angular velocity, and
in the same direction, and always on the same meridian as the fourth satellite. (4) and (5) give the slow
diurnal tide of speed n—2Q.

Zcost
2772
but in the opposite direction, and on the colure 90° in advance of the moon when she is in her node.

6. A satellite of mass m sin? , moving in N. declination 45° with twice the moon’s angular velocity,

7. A repulsive satellite of mass —m. %sin3 %cos—;, moving in the equator with twice the moon’s angular

velocity, but in the opposite direction, and always on the same meridian as the sixth satellite. (6) and
(7) give the fast semi-diurnal tide of n+2Q.
8. A satellite of mass msin¢cos< fixed in N. declination 45° on the colure.

9. A repulsive satellite of mass —m. % sin < cos 7, fixed in the equator on the same meridian as the eighth

satellite. (8) and (9) give the sidereal diurnal tide of speed n. .

10. A ring of matter of mass m, always passing through the moon and always parallel to the equator.
This ring, of course, executes a simple harmonic motion in declination, and its mean position is the
equator. This gives the fortnightly tide of speed 2Q.

Now if we form the potentials of each of these satellites, and omit those parts which, being indepen-
dent of the time, are incapable of raising tides, and add them altogether, we shall obtain the expansion
for the moon’s tide-generating potential used above; hence this system of satellites is mechanically

30 2
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II cosec ¢ must henceforth be taken as the full precession of the earth, and the time
may be conveniently measured from an eclipse of the sun or moon. Let m, ¢, be the
sun’s mass and distance; £, the earth’s angular velocity in a circular orbit; and let

3 m,
T /=§ ;/3

It would be rigorously necessary to introduce a new set of quantities to give the
heights and lagging of the seven solar tides : but of the three solar semi-diurnal tides,
one has rigorously the same period as one of the three lunar semi-diurnal tides
(viz.: the sidereal semi-diurnal with a speed 2n), and the others have nearly the same
period ; a similar remark applies to the solar diurnal tides. Ience we may, without
much error, treat &, ¢, &', € as the same both for lunar and solar tides ; but K, ¢
must replace £”, €, because the semi-annual replaces the fortnightly tide.

Then if new auxiliary functions ®, ¥, X, be introduced, the whole tide-generating
potential V per unit volume of the earth at the point ¢, ), r{ is given by

v

wr?

= — (1970 )(&—7%) &e.
If then, as in (10), we put
c—b=o® +X,, &c., ¢c,—b,=0 +X_, &ec.,
the equation to the tidally-distorted earth is r=a-+o+o, where

equivalent to the action of the moon alone. The satellites 1, 2, 3, in fact, give the semi-diurnal or
® terms; satellites 4, 5, 6, 7, 8, 9 give the diurnal or ¥ terms; and satellite 10 gives the fortnightly or
X term.

This is analogous to ““ GAUSs’S way of stating the circumstances on which ‘secular’ variations in the
elements of the solar system depend ;”” and the analysis was suggested to me by a passage in THOMsON and
Tarr’s ‘Nat. Phil.,” § 809, who there refer to the annular satellite 10.

It will appear in Section 22 that the 3rd, 8th, and 9th satellites, which are fixed in the heavens and
which give the sidereal tides, are equivalent to a distribution of the moon’s mass in the form of a uniform
circular ring coincident with her orbit. And perhaps some other simpler plan might be given which
would replace the other repulsive satellites.

These tides, here called “sidereal,” are known, in the reports of the British Association on tides for 1872
and 1876, as the K tides.

In a precisely similar way, it is clear that the sun’s influence may be analysed into the influence of
nine other satellites and one ring, or else to seven satellites and two rings. Then, with regard to the
interaction of sun and moon, it is clear that those satellites of each system which are fixed in each system
(viz.: 3, 8, and 9), or their equivalent rings, will not only exercise an influence on the tides raised by
themselves, but each will necessarily exercise an influence on the tides raised by the other, so as to produce
tidal friction. All the other satellites will, of course, attract or repel the tides of all the other satellites
of the other systems; but this interaction will necessarily be periodic, and will not cause any interaction in
the way of tidal friction or change of obliquity, and as such periodic interaction is of no interest in the
present investigation it may be omitted from consideration. In the analysis of the present section, this
omission of all but the fixed satellites appears in the form of the omission of all terms involving the moon’s
or sun’s angular velocity round the earth.
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gf{:——af2 g—:—mf &e.

T 42

0=

:‘

Also if @, y, z and @, v, 2, be the moon’s and sun’s direction cosines, we have as
in (7),
YP—2=2+X+H(1—6p%), &o., y =2 =2, +X +4(1—6p), &e.

Then using the same arguments as in Section 3, the couples about the three axesin
the earth may be found, and we have

e 1)

where in the first term , v, z are written for £ 7, { in o+, and in the second term
®, v,, 2, are similarly written for & 7, {

Now let 3,., ..., L., indicate the parts of the couple 3 which depend on the
moon’s action on the lunar tides, the sun’s action on the solar tides, and the moon’s
and sun’s action on the solar and lunar tides respectively, then

qL qL»n” n,* ) o d d \o
o + T<yd —F rl1/> T <y’ d7 d?/ >a }

Then obviously

Imm/_,_gjrl,
c ' q

= (C - b)y/z/ + (c/ - b/)yz+ &C‘

As before, we only want terms with argument 7 in 3L, 3., and non-periodic
terms in ..

The quantities a, b, &c., @, y, z with suffixes differ from those without in having
£, in place of £, and it is clear that no combination of terms which involve 2, and
£ can give the desired terms in the couples. Hence, as far as 3, W, P, are
concerned, the auxiliary functions may be abridged by the omission of all terms
involving 2 or £2,.

Therefore, from (4), we now simply have

D= =p® cos 2n, ¥Y=T,= —2pq(p*—q?) cos n, X=X =0.

But ¢c—b only differs from ¢,—b, in that the latter involves 2, instead of £2, and the
same applies to yz and vz,
Hence, as far as we are now concerned,

(c—b)y,z,=(c,—b,)yz

and similarly each pair of terms in 3,,, are equal nter se.
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Thus
%O'_m/ - 4_;5 =(c—b)yz—d(y*—2*) —exy +frx.

Comparing with (14), when X is put equal to zero, we have

T = LW T 04 (1= 6} — IR e,

This quantity may be evaluated at once by reference to (15), (16), and (17), for it is
clear that 3, is what %,. becomes when E =FE,=0, E'\=1/,=0, and when 277,
replaces 7%

If, therefore, we ut:ﬁﬂ"—’sz sin n4G,,,, cos n, and remark that
P C 7

1p*3(p*— ) =LPQ, 2pq(p*—*) (p*+¢*—6p°¢)) =PQ(1—2Q?), 2pq(p*°—¢*)’=P*Q,

we have by selecting the terms in B, £ out of (15) and (16),

F mm,+%’= —LEPQ? cos 2e—E'PQ(1—2Q?) cos €

Gy, + %: LEPQ? sin 2e+EP*Q sin ¢

It may be shown in a precisely similar way by selecting terms out of (21) that

ﬁomm/ -~ T—;'/“—_:‘%EQ4 Sin 2€+EIP2Q2 Sil’l E’ . N . . . . (3 4:)

It is worthy of notice that (33) and (34) would be exactly the same, even if we did
not put B\=FE,=FE; K \=F,=F; e¢=¢,=c; €,;=¢,=¢, because these new terms
depend entirely on the sidereal semi-diurnal and diurnal tides. The new expressions
which ought rigorously to give the heights and lagging of the solar semi-diurnal and
diurnal tides would only occur in 3L,,..

In the two following sections the results are collected with respect to the rate of
change of obliquity and with respect to the tidal friction.

§ 9. The rate of change of obliquity due to both sun and moon.

The suffixes m?, m 2, mm, to % will indicate the rate of change of obliquity due to
the moon alone, to the sun alone, and to the sun and moon jointly.

Then writing for P and @ their values, cos ¢ and sin 4, we have by (19) and (29), or
by (30),
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77/5 d@m b 3, 3 7
Iy = +sin ¢ cos ©(1—2 sin?¢) K sin 2e+4-$ sin®7 cos 17’ sin € —§ sin® +E” sin 2¢”
o (59)
N P, ’
2 =1 &in 1 cos 1(1 —3 sin?7) K sin 26-]-4 sind s cos tF’ sin € — 2 sin®¢H"” sin 2¢”
T2 dt

and by (83) and analogy with (19) and (29)

@ d@'mm/ .

—3% sin®s cos off sin 2e— sinscos® i sine . . . . (36)
7T, dt

The sum of these three values of - glves the total rate of change of obliquity due

both to sun and moon, on the assumptlon that the three semi-diurnal terms may be
grouped together, as also the three diurnal ones.

It will be observed that the joint effect tends to counteract the separate effects ; this
arises from the fact that, as far as regards the joint effect, the two disturbing bodies
may be replaced by rings of matter concentric with the earth but oblique to the
equator, and such a ring of matter would cause the obliquity to diminish, as was shown
in the abstract of this paper (Proc. Roy. Soc., No. 191, 1878), by general considera-
tions, must be the case.

§ 10. The rate of tidal friction due to both sun and moon.

The equation which gives the rate of retardation of the earth’s rotation is by (26)
do;

i it will however be more convenient henceforward to replace w; by —n and

to regard n as a variable, and to indicate by n, the value of n at the epoch from
which the time is measured.

Generally the suffix 0 to any symbol will indicate its value at the epoch.

Then the equation of tidal friction may be written

o2) B B B (37)

Tat ny) C;L; _CT?ZO’_I— Cn

Then by (22) and (34), in which the semi-diurnal and diurnal terms are grouped
together, we have

%@ﬂ——.|2~ 8 . YRS PEACIE s g JBMI]
<Tg> Cno---(cous v+2 sin*e)  sin 2e+ sin?¢(1 — 3 sin? ¢) £ sin ¢ = G ]

<%>._"Z’2=% sin* ¢ sin 2e+ sin® ¢ cos® £’ sin €
Cn, J
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§ 11. The rate of change of obliquity when the earth is viscous.

In order to understand the physical meaning of the equations giving the rate of
change of obliquity (viz.: (85) and (86) if there be two disturbing bodies, or (29) if
there be only one) it is necessary to use numbers. The subject will be illustrated in
two cases: first, for the sun, moon, and earth with their present configurations ;
and secondly, for the case of a planet perturbed by a single satellite. For the first
illustration I accordingly take the following data: ¢g=382'19 (feet, seconds), the earth’s
mean radius a=20'9 X 105 feet, the sidereal day ‘9973 m. s. days, the sidereal year
=365'256 m. s. days, the moon’s sidereal period 27°3217 m. s. days, the ratio of the
earth’s mass to that of the moon »=282, and the unit of time the tropical year 365'242
m. s. days.

Then we have
ny=27 9973 in radians per m. s. day
29
g—5a
=4 X g5 of 47+ (month)?
7,=% of 47+ (sidereal year)®

Then it will be found that

9

2 ~
::7= 6598 degrees per million tropical years
2770
T?
=-1423 ,, ’ ’ oo . (39)
Qg
TT
—J= .3064 39 3 b4
ar, y

These three quantities will henceforth be written w2, u ? .
For the purpose of analysing the physical meaning of the differential equations for
% and —‘é<~7} ), no distinction will be made between - and 10, &c., for it is here only
dt dt\my, " an, : .
sought to discover the rates of changes. But when we come to integrate and find the
total changes in a given time, regard will have to be paid to the fact that both 7 and
n are variables.

For the immediate purpose of this section the numerical values of v? u? wu, given
in (39), will be used.

I will now apply the foregoing results to the particular case where the earth is u
viscous spheroid.

Let p= 2gaw

=T0y" where v is the coefticient of viscosity.
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Then by the theory of bodily tides as developed in my last paper

E= cos 2¢, E'= cos €, E"= cos 2€’, E”"= cos 2¢”

2 L, 20 2 N LV
tan 26=”;:—7/, tan e'=1;7', tan 2¢ = tan 2¢”="1% (40)

Rigorously, we should add to these

E,= cos 2¢;, Fy= cos 2¢,, E';= cos €, E'y= cos €,

2(n—1) _2nt10)

9 . (407
tan 2€1=“7h’ tan 2e, —hal 10

’ —20 ’
tan e 1=ZL-P~—, tan €=

But for the present we classify the three semi-diurnal tides together, as also the
three diurnal ones.
Then we have

" lging —3qins) s 3 gind n 2¢ (2 u D) —-3-«in® ¢ sin 4 u®

(Zt—[z sin 4 cos 4(1—2 sin? ¢) sin 4e+4§ sin? ¢ cos ¢ sin 2¢ |(u?+u ) —% sin® 1 sin 4€"w
—+35 sin? 4 sin 4¢”"u *— (L sin® 7 cos ¢ sin 4e-+3 sin ¢ cos® ¢ sin 2€)uu,.

Now

1 sin 7 cos 1(1—3 sin® 7) =+ sin 2¢(5+3 cos 2¢)=75"(5 sin 2043 sin 41)
8 gin3 7 cos 1=+ sin 2¢(1 — cos 2¢) = (2 sin 20— sin 47)
35 sind 1=+ (3 sin ¢— sin 3¢), £ sin® ¢ cos 1=%(2 sin 21— sin 4¢)

L sin ¢ cos® t=4 sin 2¢(1+4 cos 21)=4¢"%(2 sin 2i+ sin 4¢).

If these transformations be introduced, the equation for d% may be written
64%: —9(u? sin 4€” +u? sin 4€”) sin 74-8(u? sin 4¢” 4w, sin 4€”) sin 3 |
.
+[(5 sin 4e46 sin 2¢') (v?+u?)— (4 sin 4e4-8 sin 2¢)un, |sin2e -+ - (41)

+[ (% sin 4e—3 sin 2¢) (W4 u )+ (2 sin 4§—4 sin 2¢')uu, |sin 40 J

Then substituting for % and u, their numerical values (39), and omitting the term
depending on the semi-annual tide as unimportant, I find

64%:: — 59378 sin 4¢” sin i+ 1:9793 sin 4¢” sin 3
+ {27846 sin 4423611 sin 2¢'} sin 2t Coee (42)

4 {1'8159 sin 4e— 36317 sin 2¢'} sin 41
MDCCCLXXIX, 3r
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The numbers” are such that d—; is expressed in degrees per million years.

The various values Which(%is capable of assuming as the viscosity and obliquity

vary is best shown graphically. In Plate 36, figs. 2 and 3, each curve corresponds
to a given degree of viscosity, that is to say to a given value of ¢ and the ordinates

give the values of g—; as the obliquity increases from 0°to 90°. The scale at the side

of each figure is a scale of degrees per hundred million years—e.g., if we had e=30°
and 4 about 57°, the obliquity would be increasing at the rate of about 3° 45" per
hundred million years.

The behaviour of this family of curves is so very peculiar for high degrees of
viscosity, that I have given a special figure (viz.: Plate 36, fig. 3) for the viscosities
for which e=40°, 41°, 42°, 43°, 44°.

The peculiarly rapid variation of the forms of the curves for these values of e is due
to the rising of the fortnightly tide into prominence for high degrees of viscosity.
The matter of the spheroid is in fact so stiff that there is not time in 12 hours or a
day to raise more than a very small tide, whilst in a fortnight a considerable lagging
tide is raised.

For e=44° the fortnightly tide has risen to give its maximum effect (i.e., sin 4¢’=1),
whilst the effects of the other tides only remain evident in the hump in the middle of
the curve. Between e=44° and 45° the ordinates of the curve diminish rapidly and
the hump is smoothed down, so that when e=45° the curve is reduced to the
horizontal axis.

By the theory of the preceding paper,* the values of € when divided by 15 give
the corresponding retardation of the bodily semi-diurnal tide—e.g., when e=30° the
tide is two hours late. Also the height of the tide is cos 2¢ of the height of the
equilibrium tide of a perfectly fluid spheroid—e.g., when e=30° the height of tide is
reduced by one-half. In the tables given in Part I., Section 7, of the preceding paper,
will be found approximate values of the viscosity corresponding to each value of e.

The numerical work necessary to draw these figures was done by means of CRELLE'S
multiplication table, and as to fig. 2 in duplicate mechanically with a sector ; the ordi-
nates were thus only determined with sufficient accuracy to draw a fairly good figure.
For the two figures I found 108 values of each of the seven terms of 2% (nine values
of ¢ and twelve of ¢), and from the seven tables thus formed, the values corresponding
to each ordinate of each member of the family were selected and added together.

From this figure several remarkable propositions may be deduced. When the
ordinates are positive, it shows that the obliquity tends to increase, and when
negative to diminish. Whenever, then, any curve cuts the horizontal axis there is a

position of dynamical equilibrium ; but -when the curve passes from above to below, it

# ¢« On the Bodily Tides of Viscous and Semi-elastic Spheroids,” &e., Phil. Trans., 1879, Part L.
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is one of stability, and when from below to above, of instability. It follows from this
that the positions of stability and instability must occur alternately. When e=0 or
45° (fluidity or rigidity) the curve reduces to the horizontal axis, and every position of
the earth’s axis is one of neutral equilibrium.

But in every other case the position of 90° of obliquity is not a position of equi-
librium, but the obliquity tends to diminish. On the other hand, from e=0° to about
80° (infinitely small viscosity to tide retardation of two hours), the position of zero
obliquity is one of dynamical instability, whilst from then onwards to rigidity it
becomes a position of stability.

For viscosities ranging from e=0° to about 421° there is a position of stability which
lies between about 50° to 87° of obliquity ; and the obliquity of dynamical stability
diminishes as the viscosity increases.

For viscosities ranging from e=30° nearly to about 421°, there is a second position
of dynamical equilibrium, at an obliquity which increases from 0° to about 50°, as the
viscosity increases from its lower to its higher value. But this position is one of
instability.

From e= about 421° there is only one position of equilibrium, and that stable, viz. :
when the obliquity is zero.

If the obliquity be supposed to increase past 90° it is equivalent to supposing the
earth’s diurnal rotation reversed, whilst the orbital motion of the earth and moon
remains the same as before ; but it did not seem worth while to prolong the figure, as
it would have no applicability to the planets of the solar system. And, indeed, the
figure for all the larger obliquities would hardly be applicable, because any planet
whose obliquity increased very much, must gradually make the plane of the orbit of
its satellite become inclined to that of its own orbit, and thus the hypothesis that the
satellite’s orbit remains coincident with the ecliptic would be very inexact.

It follows from an inspection of the figure that for all obliquities there are two
degrees of viscosity, one of which will make the rate of change of obliquity a maximum
and. the other minimum. A graphical construction showed that for obliquities of about
5° to 20° the degree of viscosity for a maximum corresponds to about e=174%,
whilst that for a minimum to about e=40°. In order, however, to check this con-
clusion, I determined the values of e analytically when ¢=15° and when the
fortnightly tide (which has very little effect for small obliquities) is neglected. I
find that the values are given by the roots of the equation

41024136602 —20'412=0, where x=3 cos 4e.

This equation has three real roots, of which one gives a hyperbolic cosine, and the

* I may here mention that I found when ¢=173°, that it would take about a thousand million years for
the obliquity to increase from 5° to 233°, if regard was only paid to this equation of change of obligquity.
The equations of tidal friction and tidal reaction will, however, entirely modify the aspects of the case.

3P 2
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other two give e=18°15"and e=41°37’. This result therefore confirms the geometrical
construction fairly well.

It is proper to mention that the expressions of dynamical stability and instability
are only used in a modified sense, for it will be seen when the effects of tidal friction
come to be included, that these positions are continually shifting, so that they may be
rather described as positions of instantaneous stability and instability.

* T will now illustrate the case where there is only one satellite to the planet, and
in order to change the point of view, I will suppose that the periodic time of the satellite
is so short that we cannot classify the semi-diurnal and diurnal terms together, but
must keep them all separate.

Suppose that n=>54; then the speeds of the seven tides are proportional to the
following numbers, 8, 10, 12 (semi-diurnal); 3, 5, 7 (diurnal) ; 2 (fortnightly).

These are all the data which are necessary to draw a family of curves similar to
those in Plate 36, figs. 2 and 3, because the scale, to which the figure is drawn, is
determined by the mass of the satellite, the mass and density of the planet, and the
actual velocity of rotation of the planet.

Then by (16) and (29) we have

£Z~Z—-[2p7q sin 4e;—p°¢*(p*—¢°) sin de—Ipq” sin de;—35p3q® sin 4¢”
+40°(p*+3¢%) sin 2¢,—pg( p*—¢°)° sin 26’ —5pg*(3p°+ ¢°) sin 2¢,]

éand q=sing

This equation may be easily reduced to the form

where p= cos

) 2
%—_—é— 135 sin z{ [10 sin 4e,—10 sin 4¢,4-16 sin 2¢’; — 16 sin 2¢’,— 12 sin 4¢’]
2 "
+ cosi[ 15 sin 4¢, —4 sin 4e4-15 sin 4e;+ 18 sin 2¢'; — 24 sin 2€'4-18 sin 2¢, |
+ cos 2¢[ 6 sin 4e,— 6 sin 4¢,+12 sin 4¢”]

+ cos 3i[sin 4€,+4 sin 4e} sin 4e,—2 sin 2¢’;—8 sin 2¢'—2 sin 2e’2]}

which is convenient for the computation of the ordinates of the family of curves which
illustrate the various values of d% for various obliquities and viscosities.

In Plate 36, fig. 4, the lag (¢) of the sidercal semi-diurnal tide is taken as the
standard of viscosity. The abscissee represent the various obliquities of the planet 8

equator to the plane of the satellite’s orbit ; the ordinates represent the values of & d 7

<the actual scale depending on the value of o > ; and each curve represents one degree
of viscosity, viz.: when e=10° 20° 80, 40° and 44°.
* Trom here to the end of the section was added July 8, 1879.
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The computation of the ordinates was done by CRELLE’S three-figure multiplication
table, and thus the figure does not profess to be very rigorously exact.

This family of curves differs much from the preceding one. For moderate
obliquities there is no degree of viscosity which tends to make the obliquity diminish,
and thus there is no position of dynamically unstable equilibrium of the system
except that of zero obliquity. Thus we see that the decrease of obliquity for small
obliquities and large viscosities in the previous case was due to the attraction of the
sun on the lunar tides and the moon on the solar tides.

In the present case the position of zero obliquity is never stable, as it was before.
The dynamically stable position at a large obliquity still remains as before, but in
consequence of the largeness of the ratio £+ (3th instead of 4'5th), this obliquity of
dynamical stability is not nearly so great as in the previous case. As the ratio 2-+n
increases, the position of dynamical stability is one of smaller and smaller obliquity,
until when 2+n is equal to a half, zero obliquity becomes stable,—as we shall see
later on.

§ 12. Rate of tidal friction when the earth vs viscous.

If in the same way the equations (37) and (38) be applied to the case where the
earth is purely viscous, when the semi-diurnal and diurnal tides are grouped together,
we have

7

_ZZ% <—73>= (¥ 4u,?)[3(cos® 4§ sin® 7) sin 4e+4 sin® ¢(1 — 3 sin?s) sin 25':‘} (43)

~+uu 4 sin* 7 sin 4e4% sin® 4 cos? ¢ sin 2€”]

n

Plate 36, fig. 5, exhibits the various values of g < > for the various obliquities and

7y
degrees of viscosity, just as the previous figures exhibited C%Z The calculations were

done in the same way as before, after the various functions of the obliquity were
expressed in terms of cos 2¢ and cos 4.

The only remarkable point in these curves is that, for the higher degrees of
viscosity, the tidal friction rises to a maximum for about 45° of obliquity. The tidal
friction rises to its greatest value when e=22%° nearly ; this is explained by the fact
that by far the largest part of the friction arises from the semi-diurnal tide, which has
its greatest effect when sin 4e is unity.

§ 18. Tidal friction and apparent secular acceleration of the moon.

I now set aside again the hypothesis that the earth is purely viscous, and return to
that of there being any kind of lagging tides.

I shall first find at what rate the earth is being retarded when it is moving with its
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present diurnal rotation, and when the moon is moving in her present orbit, and no
distinction will be made between n and 7n,; all the secular changes will be considered
later.

The numerical data of Section 11 are here used, and the obliquity of the ecliptic
+=23° 28; then u and u, being expressed in radians per tropical year, I find

27563, . 6143 ., . *]

C= 10 FEsin ZE—I—WE sin € |
119785 Lo 2669 ,F’ C e )
On =108 sin 2e-+ 108 smeJ

Then integrating the equation (37) and putting n=1y, when t=0

n=n-o—%tzno<1—§§'—t> Ce e e oo (45)
0

Integrating a second time, we find that a fixed meridian in the earth has fallen
behind the place it would have had, if the rotation had not been retarded, by
Y42 648000 o . .
%j-%— P seconds of arc. And at the end of a century it is behind time

190027 F sin 2¢4+423'49E’ sin € m. s. seconds of time.

If the earth were purely viscous, and when e=17° 30" (which by Section 11
causes the rate of change of obliquity to be a maximum), I find that at the end of a
century the earth is behind time in its rotation by 17 minutes 5 seconds.

By substitution from the second of (44), equation (45) may be written in the form

11978 ., . ‘2669
n=n0<1——-1—6—87~tb sin 2e— 5

tE’siné). B 1))

which in the supposed case of pure viscosity when e=17° 30" becomes

(47)

n:no<1 -—.006460t>

108

All these results would, however, cease to be even approximately true after a few
millions of years.

The effect of the failure of the earth to keep true time is to cause an apparent
acceleration of the moon’s motion; and if the moon’s motion were really unaffected by

* This calculation was done before I perceived that I had not chosen that degree of viscosity which
makes the tidal friction a maximum, but as all the other numerical calculations have been worked out for
this degree of viscosity I adhere to it here also.
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the tides in the earth, there would be an apparent acceleration of the moon in a
century of

1043728 K sin 2¢+4-232"50 sine . . . . . . (48)

for the moon moves over 0"°5490 of her orbit in one second of time.
This apparent acceleration would however be considerably diminished by the effects
of tidal reaction on the moon, which will now be considered.

§ 14. Tidal reaction on the moon.*™

The action of the tides on the moon gives rise to a small force tangential to the
orbit accelerating her linear motion. The spiral described by the moon about the
earth will differ insensibly from a circle, and therefore we may assume throughout
that the centrifugal force of the earth’s and moon’s orbital motion round their common
centre of inertia is equal and opposite to the attraction between them.

We shall now find the tangential force on the moon in terms of the couples which
we have already found acting on the earth. Those couples consist of the sum of three
parts, viz.: that due (i) to the moon alone, (ii) to the sun alone, and (iii) to the action
of the sun on the lunar tides and of the moon on the solar tides, the latter two being
equal inter se. _

Now since action and reaction are equal and opposite, therefore the only parts of
these couples which correspond with the tangential force on the moon are those which
arise from (i), and one-half those which arise from (iii).

We may thus leave the sun out of account if we suppose the earth only to be acted
on by the couples I,.+1%,., IW.t+3IWo,, o +L30,; these couples will be
called 3, J¥V, §7, and the part of the change of obliquity which is due to I/, YV

. av’
will be called 7

Let r and —£2 be the moon’s distance, and angular velocity at any time, and » the
ratio of the earth’s mass to the moon’s.

Let T be the force which acts on the moon perpendicular to her radius vector, in
the direction of her motion.

From the equality of action and reaction, it follows that Tr must be equal to the
couple which is produced by the moon’s action on the tides in the earth, acting in the
direction tending to retard the earth’s diurnal rotation about the normal to the ecliptic.
Referring to Plate 36, fig. 1, we see that the direction cosines of this normal are
— sin 2 cos 7, — sin 7 sin 7, cos ¢; hence

Tr=— sin ¢(3L’ cos n-+ JW sin n)+ P cos 7.

* This section has been partly rewritten and rearranged since the paper was presented. (Dec.19,1878.)
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But by (17) and (18)

X = (FutiFun) sin nct (Gt 1o cos 7
m/
— (Foe4-4Foum,) cos n4-(G,. 434G, ) sin 2.
Hence
oA
G 008 n-+ o sin H_Gm”+§G’””Z'__ndt'
Thus
Wl
Tr—0{~*cosz—|—7zs111@dt R 1))

In order to apply the ordinary‘formula for the motion of the moon, the earth must
be reduced to rest, and therefore T must be augmented by the factor (M+m)-+ M.
Then if 9 be the moon’s longitude, the equation of motion of the moon is

A\ __M+m
mdt< dt) oo (50)

But since the orbit is- approximately circular g: 0.

' M 1
Also m=C-+2%va?, and ;[m: try
14

Therefore by (49) and (50)

augn®) a21+u ﬁ’ v
a7 dt

Now let f—-<~~>ir whence 2°=0,>+ &8

The suffix 0 to £ indicates the value of 2 when the time is zero, and no confusion
will arise by this second use of the symbol &
But since the centrifugal force is equal to the attraction between the two bodies,
and the orbit is circular, therefore Q3= M+ m.
So that Q3= (M+m)E".
Therefore
r’=(M-+m)iE'n,™t, and QrP= (M +4m)in, ¢

a€

¢

and hence

d
() =(M+m),

1-+v ‘ . . .
But M4+m=ga*—, because M and m are here measured in astronomical units of
v

mass.
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Therefore our equation may be written

gar—= Lo gno“Cls a*(14v) ﬁ cos t4n sin ¢ - g
dt

Now let
§= %[( > 2(1+12)J , and let énoﬂo“"i and let N="- O (51)
And we have
,u%:% cos 14V sin zzll—;l R 6%

Tt is not hard to show that the moment of momentum of the orbital motion of the
two bodies is C+s03, and that of the earth’s rotation is obviously Cn. Hence
snd?t is the ratio of the two momenta, and p is the ratio of the two momenta at
the fixed moment of time, which is the epoch.

In the similar equation expressive of the rate of change in the earth’s orbital motion
round the sun, it is obvious that the orbital moment of momentum is so very large
compared with the earth’s moment of momentum of rotation, that u is very large and
the earth’s mean distance from the sun remains sensibly constant (see Section 19).

Then by (16) and (29), remembering that

p= cos , = sz d:Z';— —gi’lz, and Nz»;i,
we have
Nsint - ZZ”L MZ}og[Elp/ q sin 2¢, — E2p¢*(p*—¢?) sin 2e— Eypq sin 2¢,
+E1p*(p"+3¢°) sin €, — E'pg(p*—¢°)’ sin € — E'ypg*(3p°+¢°) sin €
—E3pPsin2’] . . . . . . ... ... ... (53)
And by (21)

cos % 30%, —M(p —@®) B, p® sin 2¢,+ E4p'q* sin 2+ F,q8 sin 2¢,

g’)’l/
+ E'\2p°¢? sin €+ E"2p%* p* — ¢°)* sin € + E',2p*¢® sin €] . (54)

By (33) and (34), and remembering to take the halves of &,,, and §3,,, and that
sin =@, cos =10

Nsini < “Z;”') —TQUEPQ sin 2+ EPQsine] . . . . (59)
0
Cos @gi}g'"”"’ ’P[ $HQ  sin 2L E P*Q*sin€']. . . . . (56)

MDCCCLXXTX. 3Q
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Now to obtain ‘uﬂ?

o e have to add the last four expressions together, and we

observe that the last two cut one another out, so that the expression for ‘—Z—? is inde-

pendent of the solar tides; also the terms in sin 2¢, sin € cut one another out in the

ag

sum of the first two expressions, and hence it follows that s independent of the

sidereal semi-diurnal and diurnal terms.

Thus we have

3

7 ——[Elp sin2e, — E,8sin 2¢,+ 4 F' pPgsine’; — 4 B, p*¢Psin € ,— 6 E'pq*sin 2€"] (57)

This equation will be referred to hereafter as that of tidal reaction. From its form
we see that the tides of speeds 2(n-4-£2), n+420, and 202 tend to make the moon
approach the earth, whilst the other tides tend to make it recede.

Then if, as in previous cases, we put &, =H,=F; B'\=FE,=F'; ¢ =¢,=¢; ¢ |=¢,=¢
(which is justifiable so long as the moon’s orbital motion is slow compared with that of
the earth’s rotation), we have, after noticing that

== (=) (P gy = cos i(1— sind i)
4p°eP — 4p*t=4p**(p*— )= sin® ¢ cos 1
6}‘9‘1“9 =% sin* ¢

“df— -—[cos 1(1—13 sin? ) E sin 2+ sin® ¢ cos ¢ sin € —§ sin* +£” sin 2¢"] . (58)

Now if the present values of 7, £, 7 be substituted in this equation (58) (z.e., with
the present day, month, and obliquity), and if' the tropical year be the unit of time, it
will be found that

d 1 . M 7/ : ’
101°£=?(24'27E sin 2e+4'18F" sin € —*271E" sin 2¢”)
€% enters Into this equation because 7 varies as £2° and therefore as £7°.
But we may here put é=1, because at present we only want the instantaneous rate

of increase of N.

U_ _1pmipi®™2_ _ 1 40
Now = T = 0, when 2=1,; hence multiplying the equation by
30, we have at the present time
1 dan / 1’ 17
—10 0——6115E sin 2e+1053F sin € —6828FK"sin 2¢” . . . (59)

in radians per annum.

* In a future paper on the perturbations of a satellite revolving about a viscous primary, I shall obtain
this equation by the method of the disturbing function.
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Then if for the moment we call the right-hand of this equation k, we have

N=0,—k Integrating a second time, we find that the moon has fallen behind her

t
k648000

proper place in her orbit 4 T

century, and substitute for £, and it will then be found that the moon lags in a century

seconds of arc in the time t&. Put ¢ equal a

6307 sin 2¢+108'6E sin € —7:042E" sin 2¢” seconds of arc . . (60)

~ But it was shown in Section 13 (48) that the moon, if unaffected by tidal reaction,
would have been apparently accelerated 10433 sin 2e+4-232'5F" sin ¢ seconds of arc
in a century.

Hence taking the difference of these two, we find that there is an apparent
acceleration of the moon’s motion of

412°6F ¢in 2¢+123'9F sin € 47042 sin 2¢” . . . . . (61)

seconds of arc in a century.

Now according to Apams and DELAUNAY, there is at the present time an unex-
plained acceleration of the moon’s motion of about 4" in a century. For the present
I will assume that the whole of this 4 is due to the bodily tidal friction and reaction,
leaving nothing to be accounted for by ocean tidal friction and reaction, to which the
whole has hitherto been attributed. Then we must have

412°6E sin 2¢-+4+1239F sin € +7'042E" sin 2¢'=4 . . . . (62)

This equation gives a relation which must subsist between the heights E, E’, £, of
the semi-diurnal, diurnal, and fortnightly bodily tides, and their retardations ¢, €, €,
in order that the observed amount of tidal friction may not be exceeded. But no
further deduction can be made, without some assumption as to the nature of the
matter constituting the earth. :

I shall first assume then that the matter is purely viscous, so that E= cos 2¢,
2 , v 202 .
E = cos €, B'= cos 2¢’, and tan 2e= Fn’ tan e =%’ tan 2€ =7. The equation then

becomes
4126 sin 4e-+128'9 sin 2¢ +7:042sin4€=8 . . . . . (63)

If the values of ¢, €, € be substituted, we get an equation of the sixth degree for p,
but it will not be necessary to form this equation, because the question may be more
simply treated by the following approximation.

3 Q 2
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There are obviously two solutions of the equation, one of which represents that the
earth is very nearly fluid, and the other that it is very nearly rigid.
In the first case, that of approximate fluidity, €, €, € are very small, and therefore

0 4
: _— ¢ ’ /. : " ___ 7
sin de=4e¢, sIn 2¢ =2¢€ =2¢, sin 4e =4e —4n =37a9¢

Hence
(1650248 455755 of 7:04)e=8
whence
e=gir=14'

That is to say, the semi-diurnal tide only lags by the small angle 14’. But this is
not the solution which is interesting in the case of the earth, for we know that the
earth does not behave approximately as a fluid body.

In the other solution, 2¢ and ¢ approach 90° so that p is small ; hence

4:27“97,__8 . s 2np=_ 2p . . . nw_ 4Np
sin de= A sin 2e = VY nearly, and sin 4e = a0
Hence we have
4!2
412 6< >+123 9< > fm—s
N
Put L 50 =" 50 that x= cot 2¢”; then substituting for - its value —— 27 32, we have
13207
yrogp O 704257 QH =8
whence

2> —1655x412921a—"1655=0

This equation has two imaginary roots, and one real one, viz.: *12858. Hence the
desired solution is given by cot 2¢'="12858 ; and 2¢’=Lwr—7°20, and the corres-
pondmg values of 2e and € are 2e=1r—16', and € =Lr—382". If these values for ¢,
¢, ¢ be used in the original equation (63), they will be found to satisfy it very closely ;
and it appears that there is a true retardation of the moon of 8”1 in a century, whilst
the lengthening of the day would make an apparent acceleration of 7”'1,—the difference
of the two being the observed 4”. v

With these values the semi-diurnal and diurnal ocean-tides are, according to the equi-
librium theory of ocean-tides, sensibly the same as those on a rigid nucleus, whilst the
fortnightly tide is reduced to sin 26” or '992 of its theoretical amount; and the time

of high tide is accelerated by i O .(2’ or 6% hours in advance of its theoretical time.*

* In the abstract of this paper (Proc. Roy. Soc:, No. 191, 1878) the height and lag of the bodily tide
were accidentally given instead of the height and acceleration of the ocean tide,
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If these values be substituted in the equation giving the rate of variation of the
obliquity, it will be found that the obliquity must be decreasing at the rate of ‘00197°
per million years, or 1° in 500 million years. Thus in 100 million years it would only
decrease by 12’. So, also, it may be shown that the moon’s sidereal period is being
increased by 2 hours 20 minutes in 100 million years.

Lastly, the earth considered as a clock is losing 13 seconds in a century.

There is another supposition as to the physical constitution of the earth, which will
lead to interesting results.

If the earth be elastico-viscous, then for the semi-diurnal and diurnal tides it might
behave nearly as though it were perfectly elastic, whilst for the fortnightly tide it
might behave nearly as though it were perfectly viscous. With the law of elastico-
viscosity used in my previous paper,* it is not possible to satisfy these conditions very
exactly. But there is no reason to suppose that that law represents anything but an
ideal sort of matter ; it is as likely that the degradation of elasticity immediately after
straining is not so rapid as that law supposes. I shall therefore take a limiting case,
and suppose that, for the semi-diurnal and diurnal tides, the earth is perfectly elastic,
whilst for the fortnightly one it is perfectly viscous. This hypothesis, of course, will
give results in excess of what is rigorously possible, at least without a discontinuity in
the law of degradation of elasticity.

It is accordingly assumed that the semi-diurnal and diurnal bodily tides do not lag,
and therefore e=€'=0; whilst the fortnightly tide does lag, and E'=cos 2¢”.

Thus by (88) there is no tidal friction, and by (60) there is a true acceleration of the
moon’s motion of & of 7042 sin 4€” seconds of arc in a century. Then if we take the
most favourable case, namely, when €’=22° 30’, there is a true secular acceleration of
3”521 per century. '

It follows, therefore, that the whole of the observed secular acceleration of the moon
might be explained by this hypothesis as to the physical constitution of the earth,
On this hypothesis the fortnightly ocean tides should amount to sin 22° 80, or *38
of its theoretical height on a rigid nucleus, and the time of high water should be

. d . g .
accelerated by 1 day 17 hours. Again, by (35) é: —1%5u?sin®;, from whence it may be

shown that the obliquity of the ecliptic would be decreasing at the rate of 1° in
128 million years.

The conclusion to be drawn from all these calculations is that, at the present time,
the bodily tides in the earth, except perhaps the fortnightly tide, must be exceedingly
small in amount; that it is utterly uncertain how much of the observed 4” of acce-
leration of the moon’s motion must be referred to the moon itself, and how much to

* Namely, that if the solid be strained, the stress required to maintain it in the strained configuration
diminishes in geometrical progression as the time, measured from the epoch of straining, increases in
arithmetical progression. See Section 8 of the paper on “ Bodily Tides,” &c., Phil. Trans., Part 1., 1879,
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the tidal friction, and accordingly that it is equally uncertain at what rate the day is
at present being lengthened ; lastly, that if there is at present any change in the
obliquity to the ecliptic, it must be very slowly decreasing.

The result of this hypothesis of elastico-viscosity appears to me so curious that T
shall proceed to show what might possibly have been the state of things a very long
time ago, if the earth had been perfectly elastic for the tides of short period, but
viscous for the fortnightly tide.

There will now be no tidal friction, and the length of day remains constant. The
equation of tidal reaction reduces to

2
2= — 3. gin%s sin 4€”

2
Here #? is a constant, being the value of éj; at the epoch ; and u?+ £ is the value
0

2 .
of — at the time ¢.
ey,

The equation giving the rate of change of obliquity becomes

di u?

. g 1 ge.s "
= —— 3-8’ ¢ sin 4e
dt gele

Dividing the latter by the former, we have®

sin idi=pd€
And by integration
cos 1=cos 1y—p(E—1)

If we look back long enough in time, we may find £=1-01, and p being 4-007, we

have
cos 1=cos t,— 04007

Taking 1,=28°28’, we find =28 40'.

This result is independent of the degree of viscosity. When, however, we wish to
find how long a period is requisite for this amount of change, some supposition as to
viscosity is necessary. The time cannot be less than if sin 4¢”"=1, or ¢’=22° 30’, and
we may find a rough estimate of the time by writing the equation of tidal reaction

dé u?
e 136 £

where T is constant and equal to 24°, suppose. Then integrating we have

p(EB—1)=—t3%u? sin* 1,
or

t= “%%@Zé cosec* I(£¥—1).

* Concerning the legitimacy of this change of variable, see the following section,
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When €=1-01, we find from this that —¢="720 million years, and that the length
of the month is 28'15 m. s. days. Hence, if we look back 700 million years or more,
we might find the obliquity 28° 40, and the month 2815 m. s. days, whilst the length
of day might be nearly constant. It must, however, be reiterated, that on account
of our assumptions the change of obliquity is greater than would be possible, whilst
the time occupied by the change is too short. In any case, any change in this direction
approaching this in magnitude seems excessively improbable.

PART IIL

§ 15. Integration of the differential equations for secular changes in the variables in
the case of viscosity.™

It is now supposed that the earth is a purely viscous spheroid, and I shall proceed to
find the changes which would occur in the obliquity to the ecliptic and the lengths of
the day and month when very long periods of time are taken into consideration.

I have been unable to find even an approximate general analytical solution of the
problem, and have therefore worked the problem by a laborious arithmetical method,
when the earth is supposed to have a particular degree of viscosity.

The viscosity chosen is such that, with the present length of day, the semi-diurnal
tide lags by 17° 30". It was shown above that this viscosity makes the rate of change
of obliquity nearly a maximum.t It does not follow that the whole series of changes
will proceed with maximum velocity, yet this supposition will, I think, give a very
good idea of the minimum time, and of the nature of the changes which may have
occurred in the course of the development of the moon-earth system.

The three semi-diurnal tides will be supposed to lag by the same amount and to be
reduced in the same proportion ; as also will be the three diurnal tides.

There are three simultaneous differential equations to be treated, viz. : those giving
(1) the rate of change of the obliquity of the ecliptic, (2) the rate of alteration of the
earth’s diurnal rotation, (8) the rate of tidal reaction on the moon. They will be
referred to hereafter as the equations of obliquity, of firiction, and reaction respectively.

To write these equations more conveniently a partly new notation is advantageous,
as follows :—

The suffix 0 to any symbol denotes the initial value of the quantity in question.

2 2
T T ToT o,

Let w?=-%, u 2=, uu,=-*; these three quantities are constant.
L (S ()

* This section has been rearranged, partly rewritten, and recomputed since the paper was presented.
The alterations were made on December 19, 1878.

+ If T had to make the choice over again I should choose a slightly greater viscosity as being more
interesting.
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Since the tidal reaction on the sun is neglected, 7, is a constant, and since = varies as
2 (and therefore as £7%) ; hence

2 2 2
T TR My o T

w =", —
o 2 E¥ @ n’ g n £

Let p be equal to 0% Shere v is the coefficient of viscosity of the earth. Then

19v°
according to the theory developed in my paper on tides®

s’ 17 2'!2 P
tan 26:-22%, tan € =", tan 2¢’=""—. . . . . . . (64)
P p p

To simplify the work, terms involving the fourth power of the sine of the obliquity
will be neglected.

Now let
s
P=1log, ¢, Q=2 sin?¢log e R=-3""log,, e=1Q sec j
=7 10810 ¢ W=%§8 810 & N=16 710810 6= v |
RNy, 1 cos® ¢ (65
U=1sin*tlog e, V_————-———l Py log,, e I} (65)
W=1%cos*s, X=14sin®¢ cos 1, Z=4 sin®¢ cos? ¢ J

Also let smofgi= ,% Z=N; and it may be called to mind that ¢= (%9)
0

(o]

The terms depending on the semi-annual tide will be omitted throughout.
With this notation the equation of obliquity (35) and (86) may be written,

tu, )(P sin de-+Q sin 2¢)
Rsmlle"}. .. . .. (66)

log,se ;é: sin ¢ cos ¢(1—2 sin? Z)R

gr
_%(Usin 4e+V sin 2¢')— 512

The equation (43) of friction becomes

+u )(Wsméle-l—quZe)—l— 6Zste. .o (67)

~a= <%2 3

dr T \EW

And by (58), Section 14, the equation of reaction becomes

rlf .
T é:1,(\7\78111al~s+Xs1112e) N (1))

* Phil. Trans., 1879, Part 1.
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This is the third of the simultaneous differential equations which have to be treated.
The four variables involved are ¢, &V, §, ¢, which give the obliquity, the earth’s rotation,
the square root of the moon’s distance and the time. Besides where they are involved
explicitly, they enter implicitly in Q, R, U, V, W, X, Z, sin 4e, sin 2€, sin 4€”.

Q, R, &c., are functions of the obliquity ¢ only, but P is a constant. Also

3
47;7:{3/)2— 4;37’;]_\:132, sin 2¢' = %Z%f—]l—vpz’ sin 4:€”=4":%f‘§—2§.
attempts to solve these equations by retaining the time as independent variable, and
substituting for &€ and IV approximate values, but they were all unsatisfactory, because
of the high powers of & which occur, and no security could be felt that after a con-
siderable time the solutions obtained did not differ a good deal from the true one.
The results, however, were confirmatory of those given hereafter.

The method finally adopted was to change the independent variable from ¢ to &
A new equation was thus formed between N and £ which involved the obliquity ¢
only in a subordinate degree, and which admitted of approximate integration. This
equation is in fact that of conservation of moment of momentum, modified by the
effects of the solar tidal friction. Afterwards the time and the obliquity were found
by the method of quadratures. As, however, it was not safe to push this solution
beyond a certain point, it was carried as far as seemed safe, and then a new set of
equations were formed, in which the final values of the variables, as found from the
previous integration, were used as the initial values. A similar operation was carried
out a third and fourth time. The operations were thus divided into a series of periods,
which will be referred to as periods of integration. As the error in the final values in
any one period is carried on to the next period, the error tends to accumulate ; on this
account the integration in the first and second periods was carried out with greater
accuracy than would in general be necessary for a speculative inquiry like the present
one. The first step is to form the approximate equation of conservation of moment of
momentum above referred to.

Let A=W sin 4e+X sin 2¢/, B=Z sin 2¢.

Then the equations of friction (67) and reaction (68) may be written,

sin de= I made several

— nﬁ%: <?§2+ 7,2>A +%¢B Y (1))
dg T
’)logl.l,d—f: EI—QA e e e e e e e e (7 0)

We now have to consider the proposed change of variable from ¢ to &

. anN . T d .
The full expression for ~; contains a number of periodic terms ; d—f also contains
terms which are co-periodic with those in C—d? Now the object which is here in view

MDCCCLXXIX. 3R
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is to determine the increase in the average value of NV per unit increase of the average
value of £ The proposed new independent variable is therefore not & but it is the
average value of &; but as no occasion will -arise for the use of § as involving periodic
terms, I shall retain the same symbol.

In order to justify the procedure to be adopted, it is necessary to show that, if f{¢)
be a function of ¢, then the rate of increase of its average value estimated over a
period T, of which the beginning is variable, is equal to the average rate of its increase
estimated over the same period. Now the average value of f{¢) estimated over the

¢+T
period T, beginning at the time # is %L St)dt, and therefore the rate of the increase
r+r

T
of the average value is C%%L J@)dt, which is equal to %‘.{j S (t)dt; and this last

expression is the average rate of increase of f{t) estimated over the same period. This
therefore proves the proposition in question.

Now suppose we have Et_z_M_F periodic terms, where M varies very slowly ;

then —M is the average value of the rate of increase of N estimated over a period
which is the least common multiple of the periods of the several periodic terms. Hence
by the above proposition —M is also the rate of increase of the average value of N
estimated over the like period.
at
dt
of £ estimated over a period, which will be the same as in the former case.

But the-average value of IV is the proposed new dependent variable, and the average
value of & the new independent variable. Hence, from the present point of view,

N _ M This argument is, however, only strictly applicable, supposing there are not

Similarly if ->=X+ periodic terms, X is the rate of increase of the average value

g X
. . AN dE ... ) . .
periodic terms in .- or —, of incommensurable periods, and supposing the periodic terms

are rigorously circular functions, so that their amplitudes and frequencies are not func-
tions of the time.

It is obvious, however, that if the incommensurable terms do not represent long
inequalities, and if M and X vary slowly, then the theorem remains very nearly true.
‘With respect to the variability of amplitude and frequency, it is only necessary to pos-
tulate that the so-called periodic terms are so mnearly true circular functions that the
integrals of them over any moderate multiple of their period is sensibly zero, to apply
the argument.

Suppose, for example, (¢) cos (vt+4x(t)) were one of the periodic terms, then we have
only to suppose that y(¢) and x(f) vary so slowly that they remain sensibly constant

. .12 . o .
during a period g or any moderately small multiple of it, in order to be safe in

om

assuming Jslp(t) cos (vt+x(t))dt as sensibly zero. Now in all the inequalities in IV and £
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it is a question of days or weeks, whilst in the variations of the amplitudes and
frequencies of the inequalities it is a question of millions of years. Hence the above
method is safely applicable here.

It is worthy of remark that it has been nowhere assumed that the amplitudes of the
periodic inequalities are small compared with the non-periodic parts of the expression.

A precisely similar argument will be applicable to every case where occasion will
arise to change the independent variable. The change will accordingly be carried out
without further comment, it being always understood that both dependent and inde-
pendent variable are the average values of the quantities for which their symbols
would in general stand.®

Then dividing (69) by (70) we have

aN _ T\ e10 B(T\ 26
,uclf_l <70> ¢ +A<TO>§ Ce e e (71)»
Now E"-—- B =gl 27}Sin 2¢ approximatel This approximation will be suffi-
WA VVS_inélLe~ SNt 4e APP y 19y

sin 2¢’
ciently accurate, because the last term is small and is diminishing. For the same
reason, only a small error will be incurred by treating it as constant, provided the
integration be not carried over too large a field—a condition satisfied by the proposed
“periods of integration.” Attribute then to 4, ¢ € average values, and put

2 . o +8in 2¢'
=1l3'<:—0> 7=%::é sz?ssl; 466 (72)
and integrate. Then we have
N=1p{ (=B~ 4y (1—E)) . . . . . . . (13)

This is the approximate form of the equation of conservation of moment of momentum,
and it is very nearly accurate, provided ¢ does not vary too widely.

By putting 8=0, y=0, we see that the equation is independent of the obliquity, if
there be only two bodies, the earth and moon, provided we neglect the fourth power of
the sine of the obliquity.

The equation of reaction (68) may be written

dt ?

c_lg=“+§12(WSin4€+XSin2€/)' N (Y

* In order to feel complete confidence in my view, I placed the question before Mr. E. J. Rours, and
with great kindness he sent me some remarks on the subject, in which he confirmed the correctness of
my procedure, although he arrived at the conclusion from rather a different point of view.

3R 2
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Also, multiplying the equation of obliquity (66) by %, we have

log;e¢ di _1dtf/u 9 . . o
sindcoss (1—$sin®s) dg~ NdE §12+u’ (P sin de+Qsin 2¢)

—%(U sin 4e+V sin 2¢’) — «‘:‘12 R sin 4¢€’ }

Now by far the most important term in C% is that in which W occurs, and therefore
2—% % only depends on the obliquity in its smaller term. Then, since 2W=cos’z,
therefore

o= (Vi)
Also .
sin 4 cos :O(Sl —@—% sin? 7) di=d . log, V11— SH; Z,m2

=d .log, tan ¢ (1—% sin?7)

when the fourth power of sin ¢ is neglected.
Hence the equation may be written

;’é log, tan ¢(1 —§sin®s) ——(2W 7 §>[<§;+u?>(]? sin 4e-(Q sin 2¢)
§12R51 n 4¢” ——g—ﬁ—’(Usin 4e+V sin 26,):|| N V6))

Now the term in P (which is a constant) is by far the most important of those

within brackets [ ] on the right-hand side, and 2W ' has been shown only to involve

3

¢ in its smaller term. Hence the whole of the right-hand side only involves the
obliquity to a subordinate degree, and, in as far as it does so, an average value may
be assigned to ¢ without producing much error.

In the equation of tidal reaction (68) or (74) also, I attribute to ¢ in W and X an
average value, and treat them as constants. As the accumulation of the error of
time from period to period is unimportant, this method of approximation will give quite
good enough results.

We are now in a position to track the changes in the obliquity, the day, and the
month, and to find the time occupied by the changes by the method of quadratures.

First estimate an average value of ¢ and compute Q, R ... Z, B, y. Take seven
values of £ viz.: 1, '98, 96 ... '88, and calculate seven corresponding values of N;
then calculate seven corresponding values of sin 4e, sin 2¢, sin 4¢”., Substitute these

d
values in 7;5, and reciprocate so as to get seven equidistant values of E
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Combine these seven values by WEDDLE'S rule, viz. :
6 .
L) o= vo+uy 134141+ 5 (u v ) |

and so find the time corresponding to £='88. It must be noted that the time is
negative because d¢ is negative.

In the course of the work the values of Ecorresponding to é=1, 96, ‘92, ‘88

have been obtained. Multiply them by 2W ; these values, together with the four
values of sinde, sin 2¢, sin4e” and the four of N, enable us to compute four of

logw tan (1 —4 sin®¢), as given in (75).

a&

Combine these four values by the rule

(Mu du="" g [u0+u3+8(ul+ug)]

and we get
tan (1 —% sin®7)
9810¢an 4 (L —2 sin?5))

from which the value of 7 corresponding to £='88 may easily be found. It is here
useless to calculate more than four values, because the function to be integrated does
not vary rapidly.

We have now got final values of 4, IV, ¢ corresponding to £="88.

Since the earth is supposed to be viscous throughout the changes, therefore its
figure must always be one of equilibrium, and its ellipticity of figure e=2N?,.

. £2\3 ¢ . s .
Also since = <-!—2°> = M 03, where ¢ is the moon’s distance from the earth, therefore
0

c C . . . . .
L §2<£>, which gives the moon’s distance in earth’s mean radii.

The fifth and sixth column of Table IV. were calculated from these formulas.

The seventh column of Table IV. shows the distribution of moment of momentum in
the system; it gives u the ratio of the moment of momentum of the moon’s and earth’s
motion round their common centre of inertia to that of the earth’s rotation round its
axis, at the beginning of each period of integration.

Table 1. shows the values of ¢, €, €’ the angles of lagging of the semi-diurnal,
diurnal, and fortnightly tides at the beginning of each period.

Tables II. and III. show the relative importance of the contributions of each term

to the values of g and Elogm tan7(1—% sin®¢) at the beginning of each period.

The several Zmes of the Tables IL. and IIL. are not comparable with one another,
because they are referred to different initial values of £2 and n in each line.
T will now give some details of the numerical results of each integration. The
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computation as originally carried out® was based on a method slightly different
from that above explained, but I was able to adapt the old computation to the
above method by the omission of certain terms and the application of certain
correcting factors. For this reason the results in the first three tables are only given
in round numbers. In the fourth table the length of day is given to the nearest
five minutes, and the obliquity to the nearest five minutes of arc.

The integration begins when the length of the sidereal day is 28 hrs. 56 min.,
the moon’s sidereal period 27:3217 m. s. days, the obliquity of the ecliptic 23° 28,
and the time zero.

First period.—Integration from £=1 to ‘88 ; seven equidistant values computed
for finding the time, and four for the obliquity.
For the obliquity the integration was not carried out exactly as above explained, in

as far as that gdélogm tan ¢ was found instead of C—%loglo tan 4(1—3% sin%), but the differ-
d

ence in method is very unimportant. The result marked” in Table IIT. is T log,, tan «.

The estimated average value of ¢ was 22° 15",

The final result is
N=1550, 1=20° 42', —¢=46,301,000

Second period.—Integration from £=1 to *76 ; seven values computed for the time,
and four for the obliquity.
The estimated average for ¢ was 19°

The final result
N=1559, 1=17° 21, —t=10,275,000

Third period.—Integration from £é=1 to 76 ; four values computed.

The estimated average for ¢ was 16° 30’

The final result
N=1267, i=15° 30, —t=2326,000

Fourth period.—Integration from é=1 to ‘76 ; four values computed.

The estimated average for ¢ was 15°. The small terms in 8 and y were omitted in
the equation of conservation of moment of momentum. All the solar and combined
terms, except that in V in the equation of obliquity, were omitted.

The final result
N=1160, i=14° 25", —t=10,300

# T have to thank Mr. E. M. Laxarzy, of Trinity College, for carrying out the laborious computations.
The work was checked throughout by myself.
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TaBLE L—Showing the lagging of the several tides at the beginning of each period.

Semi-diurnal | Diurnal | Fortnightly
(. ). (¢")-

I 171° 193° 0° 44/
IL. 231° 281° 1° ¥
ITL. 291° 40° 20 27"
1v. 321° 461° 5° 30°

TaBLE II.—Showing the contribution of the several tidal effects to tidal reaction

<i.e., to %;) at the beginning of each period. The numbers to be divided by 10,

Semi-diurnal. Diurnal.

I 12 12

1L 69 63
111. 2200 200
V. 70000 6100

TasLe IIT.—Showing the contributions of the several tidal effects to the change of

obliquity (z.e., to gé log,, tan i(1 —% sin 7)) at the beginning of each period.
ot | A |t il | b, |sostitom. | Srasaag. | Forinightly.| % logtans (1—}siats).
*I. ‘82 13 ‘18 03 —06 —'48 —-006 60*
II. *4de 06 02 —-01 —16 —-003 *36
IIT. 22 03 —02 —-003 23
Iv. ‘13 02 —-004 14
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TasLe IV.—Showing the physical meaning of the results of the integration.

Ratio of m.
Moon’s :
. Sidereal | Moon’s side- | Obliquity of | Reciprocal dist;)r?; in | ofm.of orbi-| pp o gene-
Time . " N, proca s tal motion to
—1). day in m. s. | real period ecliptic of ellipticity | earth’s mean | "~ " = "| rated (see
( hours. in m.s. days. ). of figure. radii. oarth’s Section 16).
rotation.

. Years. h. m. d. Degrees Fahr.
Initial 0| 23 56 | ars2 |23 28 | 232 604 401 0°
state.

I. | 46,300,000 15 30 18:62 20° 40’ 96 468 2:28 225°

II. | 56,600,000 9 55 817 17° 20 40 270 111 760°

IIL. | 56,800,000 7 50 359 15° 80'* 25 156 67 1300°
IV. | 56,810,000 6 45 1-58 14° 25'% 18 90 4ds 1760°

The whole of these results are based on the supposition that the plane of the lunar
orbit will remain very nearly coincident with the ecliptic throughout these changes.
I now (July, 1879), however, see reason to believe that the secular changes in the
plane of the lunar orbit will have an important influence on the obliquity of the
ecliptic. Up to the end of the second period the change of obliquity as given in
Table IV. will be approximately correct, but I find that during the third and fourth
periods of integration there will be a phase of considerable nutation. The results in
the column of obliquity marked (¥*) have not, therefore, very much value as far as
regards the explanation of the obliquity of the ecliptic; they are, however, retained as
being instructive from a dynamical point of view.

§ 16. The loss of energy of the system.

It is obvious that as there is tidal friction the moon-earth system must be losing
energy, and I shall now examine how much of this lost energy turns into heat in the
interior of the earth. The expressions potential and kinetic energy will be abbreviated
by writing them p.e. and £.e.

The k.e. of the earth’s rotation is 1 Ma®n?

The k.e. of the earth’s and moon’s orbital motion round their common centre of
inertia is

1 mr oy 1 (M N ey gpa 12
2M<m+./l[> 2 +2m<m+M 2 _QMr_1+v'
. . . ‘a\21 202 a?
But since the moon’s orbit is circular 2% = g(%) —:_—y, so that 1—:v=€/ . Hence the

whole k.e. of the moon-earth system is
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1
MOL2<%’}Z2+% I)
The p.e. of the system is
dn_ I g
U

Therefore the whole energy £ of the system is

lyg
2) 1,0~ <
Ma{w oy

and in gravitation units

Now since the earth is supposed to be plastic throughout all these changes, there-
fore its ellipticity of figure

n2a
o=s5""
Yy
and
1 a
— I P Yl
E—MOL{256 21}1}

If e, e+ Ae and r, r+ Ar be the ellipticity of figure, and the moon’s distance at
two epochs, if J be JoULE's equivalent, and o the specific heat of the matter con-
stituting the earth; then the loss of energy of the system between these two epochs
is sufficient to heat unit mass of the matter constituting the earth

Maf , 1 @
-3 {'2_5' Ae—y A- degrees,
and is therefore enough to heat the whole mass of the earth

—%{—%A e— Ziv A?} degrees.

It must be observed that in this formula the whole loss of k.. of the earth’s
rotation, due both to solar and lunar tidal friction, is included, whilst only the gain of
the moon’s p.e. is included, and the effect of the solar tidal reaction in giving the
earth greater potential energy relatively to the sun is neglected.

In the fifth and sixth columns of Table IV. of the last section the ellipticity of figure
and the moon’s distance in earth’s radii are given; and these numbers were used in
calculating the eighth column of the same table.

I used British units, so that 772 foot-pounds being required to heat 1 Ib. of water
1° Fahr., J=772; the specific heat of the earth was taken as th, which is about that of
iron, many of the other metals having a still smaller specific heat ; the earth’s radius was

MDCCCLXXIX. 38
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taken, as before, equal to 20'9 million feet. Then the last column states that energy
enough has been turned into heat in the interior of the earth to warm its whole mass
so many degrees Fahrenheit within the times given in the first column of the same
table.

The consideration of the distribution of the generation of heat and the distortion of
the interior of the earth must be postponed to a future occasion.

In the succeeding paper I have considered the bearing of these results on the secular
cooling of the earth, and in a subsequent paper (¢ Proceedings of the Royal Society,’
No. 197, June 19, 1879, p. 168) the general problem of tidal friction is considered by
the aid of the theory of energy.

§ 17. Integration in the case of small variable viscostty.*

In the solution of the problem which has just been given, where the viscosity is
constant, the obliquity of the ecliptic does not diminish as fast as it might do as we
look backwards. The reason of this is that the ratio of the negative terms to the
positive ones in the equation of obliquity is not as small as it might be; that ratio
sin 2¢’
sin 4e

principally depends on the fraction , which has its smallest value when e is very

small. .

I shall now, therefore, consider the case where the viscosity is small, and where it
so varies that e always remains small.

This kind of change of viscosity is in general accordance with what one may
suppose to have been the case, if the earth was a cooling body, gradually freezing as
it cooled.

The preceding solution is moreover somewhat unsatisfactory, inasmuch as the three
semi-diurnal tides are throughout supposed to suffer the same retardation, as also are
the three diurnal tides; and this approximation ceases to be sufficiently accurate
towards the end of the integration.

In the present solution the retardations of all the lunar tides will be kept distinct.

By (40) and (40'), Section 11,

2(n—4») 2n+0) y__ 20

, tan 2¢ '=—
p

2
tan 2¢;= , tan 2e= 7?, tan 2¢,= ,

N — n+ 2.0

20
tan €,= . tan e’=7—;, tan € ,=

for the lunar tides.
For the solar tides we may safely neglect £, compared with n, and we have

* This section has been partly rewritten and rearranged, and wholly recomputed since the paper was
presented. The alterations are in the main dated December 19, 1878.
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tan 26:%?, tan €'='i;_ for the semi-diurnal and diurnal tides respectively. The semi-

annual tide will be neglected.

Then if the viscosity so varies that all the €’s are always small, and if we put %:)\,

we have
sin 4e; 1—\ sin 4&,3 142 sin 4¢” N
sinde > sinde > sinde (76)
sin2¢; 4 sin 2¢/ 4 sin 2¢/, o

— =1 =1
sinde -~ 2 ginde 2 sin 4e 52

By means of these equations we may expresss all the sines of the €s in terms of
sin 4e.

Then, remembering that the spheroid is viscous, and that therefore F,= cos 2,
L'\ = cos €}, &c., we have by Sections 4 and 7, equations (16) and (29),

. -2
d:l’;‘ —-——-—[—}p q sin 4e, —p3g3(p*—q¢®) sin de—Lpq” sin 4e,— 2 p3¢P sin 4¢”
+2p°q(p*+3¢°) sin 2¢, —§pg(p*—9°)° sin 26 —4pg(3p*+¢°) sin 2¢,] . (77)
AN .
= ——[lp sin 4e,+2p*q* sin 4e+1¢® sin 4e,

+p°¢* sin 2¢, +p°¢*(p*—¢%)? sin 2¢'+p%® sin 2€,] . (78)

And by (57), Section 14,

Ccllf_; L sin de;—3q° sin 4e;—3p*q? sin 4e”4-2p%? sin 2¢’, —2p%® sin 2€y] . (79)

The first two of these equations only refer to the action of the moon on the lunar
tides; but the last is the same whether there be solar tides or not.

Then if we substitute from (76) for all the €'s in terms of sin 4¢, and introduce
cos t=P=p*—¢?, sin 1=Q=2pq, we find on reduction

d’bma 1 72 h
= —g——« sin 4e[2PQ—1NQ]
_dgm’_-:.;_; sin de[1—§Q*—AP] ¢ (80)
dg
P = 1§— sin 4e[ P—X\] J

382
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The parts of - and ditv which arise from the attraction of the sun on the solar tides

may be at once written down by symmetry, and A = may be considered as a small
Yo

fraction to be neglected compared with unity. Thus we have

dip__ 1 T2 . )
—t=— —gin 4e.1 P

dt N qn, iPe | (81)
e 1——2 sin 4e(1—1Q?) S

e~ *an, 2

Lastly as to the terms due to the combined action of the two disturbing bodies, it
was remarked that they only involved e and ¢, which are independent of the orbital
motions.

Thus by (33) we have

d'l;mm/_ _]_-_ T, 1
o= TV, S0 4e.LPQ ]
7 (82)
__C iy __ TT 102
= = —gin 4e.L@Q)

Then collecting results from the last three sets of equations and substituting cos s

and sin ¢ for P and @, and % for A, we have

di__1sinde, . . . 20N . B
1 2 2 — 2
v - SN % COS z[r “+7,°=7T, T sec z}
olN sin 4e . N .
1 —1 2 1 i —_2

~ =% {(1 L sin? ) (47 ¥ +L77, sin® ¢ 77 CoS z} .. (83)
d€ | sinde _ 1 .
b =% - cosz’r<1——nsecz> )

These are the simultaneous equations which are to be solved.

Subject to the special hypothesis regarding the relationship between the retarda-

first of them, and of ——“%rﬁ cos 1 in the second, they are rigorously true.

We will first change the independent variable in the first two equations from ¢ to 3
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Dividing the first and second equations by the third, and observing that

o 2%
an ollogtan
we have
2 7
1+<l’> —<D>—2—Q sect
9 v T T n
dglog tan? o= 0
N 1—Esecz>
Lo L L. (89)
1—3sin®e ™\, 1 £
dN__ cost 1:1+<~r>i| 9<>sm'btan'e n
g
l——sece
J

If there be only one disturbing body, which is an interesting case from a theoretical
point of view, the equations may be found by putting =0, and may then be written

. 207
-, COos 2—1—7/‘
z___m,__,, _
dflog tan® o= 0
COS t——
n
1—}sin?i—2 cos . . (85)
iN_ 3 ” R .o .o
ag .
wig cos i— "2
n
@& . P .0
P =% S 4e.£m0<cos = %> J

From these equations we see that so long as £ is less than n cos 7, the satellite

recedes from the planet as the time increases, and the planet’s rotation diminishes,
because the numerator of the second equation may be written cos z<cos 7,—7/;>+—}q— sin® 1,

which is essentially positive so long as £ is less than n cos¢. But the tidal friction
vanishes whenever 2= n—l—t—(gsib. The fraction —1—2%*

2cos8¢ 2 cost
than unity, and therefore the tidal friction cannot vanish, unless the month be as
short or shorter than the day. The obliquity increases if £ be less than in cos <,
but diminishes if it be greater than 7 coss. Hence the equation 2=13n cos ¢ gives
the relationship which determines the position and configuration of the system for
instantaneous dynamical stability with regard to the obliquity (compare the figures

2, 3, 4, Plate 36). Trom this it follows that the position of zero obliquity is one of

1s however necessarily greater
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dynamical stability for all values of n between £ and 202, but if n be greater than 21,
this position is unstable.*

We will now return to the problem regarding the earth. We may here regard % as

a small fraction, and ¢ as sufficiently small to permit us to neglect § sin*7; also <% sec @> ,

£ . 20 .
“ 2 sec i, <2> — gec ¢ will be neglected.
TN T/ N

* Added on September 25, 1879.—The result in the text applies to the case of evanescent viscosity.
If the viscosity be infinitely large the sines of twice the angles of lagging will be inversely instead of
directly proportional to the speeds of the corresponding tides (compare p. 482). Thus we must here invert
the right-hand sides of the six equations (76). If the obliquity be very small (77), (78), (79) become
2(1—N\)

, 2
% Z%TQT 4S111’I,Sln4'e]|:1+——————~—~ 2(1— X):l
2 A2
=% é&‘%sinisin% }il_zl\*ﬁi&)
0 =

S
dt Rat — gny®

v

(85)

sin 4e,

‘When 2V =1, %: apparently becomes infinite; but in this case the viscosity must be infinitely large in
order to make the tide of speed n—2Q lag at all, and if it be infinitely large sin 4e, is infinitely small. If
the viscosity be large but finite, then when 2\=1, the slow diurnal tide of speed %»—2Q is no longer a

true tide, but is a permanent alteration of figure of the spheroid. Thus ¢;=0 and % depends on

[sin 4e;— sin 2¢'] which is equal to sin 4e;[1—2(1—)\)] when the viscosity is large, and vanishes when

2v=1. Thus when the viscosity is very large (not infinite) % vanishes when 2Q--n=1, as it does when
the viscosity is very small.

When 1+ 20 —4A2=0, that is, when A= /Z+1—1 1-236, vamshes and it is negative if \ be a little

greater, and positive if a little less than 1+-1'236. And 1—"7\ is negative if A be greater than .

Hence it follows that for large viscosity of the plamet, zero obliquity is dynamically unstable, if the satellite’s
period be less than 1:236 of the planet’'s period of rotation; is stable if the satellite’s period be between 1-236
and 2 of the planet’s period; and is unstable for longer periods of the satellite.

; —40?

If the viscosity be very large y % log tan27'§=1—+1£)\“2x4—)1, but if the viscosity be very small the same

2:

expression _11—1—. For positive values of A, less than 1 and greater than ‘6910 or 1-+1-447, the former
is less than the latter, and if N be less than 11447 and greater than 0 the former is greater than the
latter.

Hence if there be only a single satellite, as soon as the month is longer than two days, the obliquity of
the planet’s axis to the plane of the satellite’s orbit will increase more, in the course of evolution, for

large than for small viscosities. This result is reversed if there be two satellites, as we see by comparing
figs. 2 and 4, Plate 36,
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2 20 .
1—|—<Z’> —<L>—~sec )
T T n

N<1 _o sec z)
Vi3

Then our equations are

log, tem2

czg 2=

D'
.

(86)

aN TN, 4T, . .o .
— ARG Y = —
p«df—l <7> +57sin ¢ tan i+ n(secz l)J

The experience of the preceding integration shows that ¢ varies very slowly com-
pared with the other variables IV and ¢; hence in integrating these equations an
average value will be attributed to ¢, as it occurs in small terms on the right-hand
sides of these equations.

The second equation will be considered first.

2
We have T=EE" so that if we put ,3——1—3-<T> y=—— sm ttan ¢, and omit the last
7o,

term, we get by integrating from 1 to N and from 1 to f
N=1p{l—fHBI—E 4y 1 —E)) . . . . . . (D)

as a first approximation. This is the form which was used in the previous solution,
for, by classifying the tides in three groups as regards retardation of phase, we virtually
neglected 2 compared with n.

This equation will be sufficiently accurate so long as ‘% is a moderately small frac-

tion ; but we may obtain a second approximation by taking account of the last term.

Now

N . M, 1
— (sect—1)=% 1n2 ¢ ; ~-; very nearly

o NVE
£, 1
=3}sin?i 2 —————

by substituting an approximate value for N.

A more correct form for the equation of conservation of moment of momentum will
be given by adding to the right-hand side of equation (87) the integral of this last
expression from 1 to ¢ and multiplying it by w. And in effecting this integration ¢
may be regarded as constant.

Let k=—;”’. Then since

1 1 1
FU— ) +7c2§2+k3s+k3 5
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Therefore

ﬁ«fg(zgf)—%uG_l)"'El%@ >+/31 5(7—51)'
il N S e

Hence the second approximation is

N=1p{(1=€)+B(I—E2)+y(1— )} +hsinti 0 1 (G-1) G4

ny 1+p\& LT+u
. g2 8 1 1—
+3 sin? ¢ n—;’<;’i——1> log {—41%——52} .. (88)

It would no doubt be possible to substitute this approximate value of IV in terms of
& in the equation which gives the rate of change of obliquity, and then to find an
approximate analytical integral of the first equation. But the integral would be very
long and complicated, and I prefer to determine the amount of change of obliquity by
the method of quadratures.

In the present case it is obviously useless to try to obtain the time occupied by
the changes, without making some hypothesis with regard to the law governing the
variations of viscosity ; and even supposing the viscosity small but constant during
the integration, the time would vary inversely as the coefficient of viscosity, and would
thus be arbitrary. The only thing which can be asserted is that if the viscosity be
small, the changes proceed more slowly than in the case which has been already solved
numerically.

To return, then, to the proposed integration by quadratures: by means of the
equation (88) we may compute four values of IV (corresponding, say, to é=1, ‘96, *92,
‘88); and since ﬂr——g,, and 9 —'!—2— . Nge Ve may compute four equidistant values of all
the terms on the right- hand s1de of the first of equations (86), except in as far as ¢ is
involved. Now ¢ being only involved in small terms, we may take as an approximate
final value of ¢ that which is given by the solution of Section 15, and take as the four
corresponding values %, io-l—'%—@, @0+2(—@—gl°—), ..

Hence four equidistant values of the right-hand side may be computed, and com-
bined by the rule fskz,oxdxzﬁ[uo+u3+3(u1+uz)] which will give the integral of the
right-hand side from & to 1; and this is equal to log tan2 — log tan2

The integration was divided into a number of penods, just as in the solution of

Section 15. The following were the results :
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Furst period. From =1 to '88; u=4'0074; +=20° 28’; N=1'5478. The term
in ;%Qin the expression for N added 0012 to the value of .
Second period. From =1 to 76 ; p=22784; ¢=17° 4’; N=1'5590. The term
in %" added ‘0011 to the value of V.
Third period. From §=1 to '76; p=1'1107; 1=15° 22"; N=1-2677. The term
in P added ‘0007 to the value of V.

o

It may be observed that during the first period of integration —g diminishes, and

reaches its minimum about the end of the period. During the rest of the integration
it increases. If we neglect the solar action and the obliquity, it is easy to ﬁnd the

minimum value of —.  For Q——% Fléi and reaches its minimum when g—zg_ —_ f : but
Z—JE—Y— —p.  Therefore N—@. Now N=1+4pu(1—¢), and hence §=2 1—? If p=4,

£=15="9375. This value of' £ is passed through at near the end of the first period
of integration. At this period there are 19-2 mean solar hours in the day; 22} mean
solar days in the sidereal month; and 28% rotations of the earth in the sidereal
-month. This result of 28% is, of course, only approximate, the true result being
about 29.%*

The physical meaning of these results is given in a table below.

At the end of the third period of integration the solar terms (those in ) have

become small in all the equations, and as they are rapidly diminishing they may be
safely neglected. To continue the integration from this point a slight variation of
method will be convenient.

Our equations may now be written approximately

N=14u(1—§)

C) »

1= —;@ sect

“ S S
log tan®;= & )

n

In order to find how large a diminution of obliquity is possible if the integration
be continued, we require to stop at the point where n cos =212,
Now the equation N=1+pu(1—£) may be written

=i A7)

* The subject is referred to from a more general point of view in a paper on the ““Secular Effects of
Tidal Friction,” see ¢ Proc. Roy. Soc.,” No. 197, 1879.
MDCCCLXXIX. 3T
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If therefore we put x=3y/0, we must stop the integration at the point where
n=2x" sec v, « being given by the equation

9243 sec 7;=1+}Ll: _:_fl:o]

Ty &r

And if we assume ¢=14°, x is given by
1 o
at—Ln, cos 14°(1 -|—p,)9c+% cos 14°=0

because p=1-sny0"
Now at the end of the third period of integration, which is the beginning of the
new period, I found

log 7,=384753, log p=9'82338—10, and log s=15'39378 —10

The unit of time being the present tropical year.

Hence the equation is
2*—5690x-+19586=0

The required root is nearly y/5690, and a second approximation gives x=1025=16703
(16°51 would have been more accurate).
But 2,!=8616. Hence we desire to stop the integration when

[N\ 8616
f‘(n) =16703— °16

Now p="6659 ; hence when ¢é='516, N=1-322.
In order to integrate the equation of obliquity by quadratures, 1 assume the four
equidistant values,

N=1-000, 1-107, 1-214, 1:321

N-1_

~eeso— LT (N--1)(1'502) the corresponding

And by means of the equation {=1

values of £ are found to be
1-000, *§393, ‘6786, 5179

. n, 1 . P ,
Then by means of the formula %=;Q Ve the corresponding values of ", are found
0
to be

0909, 1388, 2395, 4951

I assumed conjecturally four values of 4 lying between #,=15° 22" and +=14°, which

I knew would be very nearly the final value of 7 ; and then computed four equidistant

d )

values of — - log,, tan 5.
The values were

‘19381, ‘16230, ‘11882,  —-00684.

The fact that the last value is negative shows that the integration is carried a little
beyond the point when 7 cos =242, but this is unimportant.
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Combining these values by the rules of the calculus of finite differences, I find
1=138° 59",

This final value of & (viz.: *5179) makes the moon’s sidereal period 12 hours, and
the value of IV (viz.: 1'321) makes the day 5 hours 55 minutes.

These results complete the integration of the fifth period.

The physical meaning of the results for all five periods is given in the following
table :—

Sidereal day in m.s. Moon’s sidereal period Obliquity of
hours and minutes. in m.s. days. ecliptic.
h. m.
Initial 23 56 27-32 days 23° 28
15 28 1862 20° 28
9 55 817 17 4
7 49 359, 15° 22'*
Final 5 55 12 hours 14 0'*

It is worthy of notice that at the end of the first period there were 289 days of
that time in the then sidereal month ; whilst at the end of the second period there
were only 19'7. It seems then that at the present time tidal friction has, in a sense,
done more than half its work, and that the number of days in the month has passed
its maximum on its way towards the state of things in which the day and month are
of equal length—as investigated in the following section.

In the last column of the preceding table the last two results in the column giving
the obliquity of the ecliptic (which are marked with asterisks) cannot safely be
accepted, because, as I have reason to believe, the simultaneous changes of inclination
of the lunar orbit will, after the end of the second period of integration, have begun
to influence the results perceptibly.

For this same reason the integration, which has been carried to the critical point

where n cos 1=21, and where d— changes sign, will not be pursued any further. Never-

theless we shall be able to trace the moon’s periodic time, and the length of day to
their initial condition. It is obvious that as long as n is greater than £, there will
be tidal friction, and % will continue to approach £2, whilst both increase retrospectively
in magnitude.

I shall now refer to a critical phase in the relationship between n and £, of a totally
different character from the preceding one, and which must occur at a point a little
more remote in time than that at which the above integration stops.

This critical phase occurs when the free nutation of the oblate sphercid has a fre-
quency equal to that of the forced fortnightly nutation.

In the ordinary theory of the precessmn and nutation of a rigid oblate spheroid, the
fortnightly nutation arises out of terms in the couples acting about a pair of axes
fixed in the equator, which have speeds n—202 and n+420. If C and A be the
greatest and least principal moments of inertia, then on integration these terms are

312
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divided by S n—l—n:FQJZ and give rise to terms in Z— and % sin ¢ of speed 202. When

20 is neglected compared with 7, we obtain the for mu]a,, given in any work on physical
astronomy, for the fortnightly nutation.

Now it is obvious that if ClAn—l—n:Qn, the former of these two terms becomes

¢ the cllipticity of the

n?
spheroid ; and since the spheroid is viscous e= %E Therefore the critical relationship

. . . . cq C
infinite. Since in our case the spheroid in homogeneous

i
18 g§+n= 20.

When this condition is satisfied the ordinary solution is nugatory, and the true
solution represents a nutation the amplitude of which increases with the time.

"The critical poiﬂt where the above integration stops is given by 2—7?:@05 7, and this
2
critical point by 2—;?—:1—}—lﬁ ; 1t follows therefore that Q is little larger in the second

case than in the first. Therefore this critical point has not been already reabched where
the integration stops, but will occur shortly afterwards.

It is obvious that the amplitude of the nutation cannot increase for an indefinite
time, because the critical relationship is only exactly satisfied for a single instant.
In fact, the problem is one of far greater complexity than that of ordinary disturbed
rotation. The system is disturbed periodically, but the periodic time of the disturb-
ance slowly increases, passing through a phase of equality to the free periodic time ;
the problem is to find the amplitude of the oscillations when they are at their maximum,
and to find the mean configuration of the system some time before and some time
after the maximum, when the oscillations are small. This problem does not seem to
be soluble, unless we take into account the slow variation of the argument in the
periodic disturbing term; and when the argument varies, the disturbing term is not
strictly a simple time harmonic.

In the case of the viscous spheroid, the question would be further complicated by
the fact that when the nutation becomes large, a new series of bodlly tides is set up
by the effects of inertia.

I have been unable to make a satisfactory examination of this problem, but as far as
I have gone it appeared to me probable that the mean obliquity of the axis of the
spheroid would not be affected by the passage of the system through a phase of large
nutation ; and although I cannot pretend to say how large the nutation might be, yet
I consider it probable that the amplitude would not have time to increase to a very
wide extent.*

* T believe that I shall be able to show in an investigation, as yet incomplete, that when this critical
phase is reached, the plane of the lunar orbit is mnearly coincident with the equator of the earth. As
the amplitude of this nutation depends on the sine of the obliquity of the equator to the lunar orbit, it
seems probable that the nutation would not become considerable.—dJune 30, 1879,
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Throughout all the preceding investigations, the periodic inequalities have been
neglected. Now a full development of the couples 3, J¥, I, which are due to the
tides, shows that there occur terms of speeds n—242, and n—4£ in the first two, and
of speeds 22 and 40 in the last. The terms in #—202 in I and Y will clearly
give rise to an increasing nutation at the critical point which we are considering,
but they will be so very much smaller than those arising out of the attraction on
the permanent equatorial protuberance that they may be neglected. The terms in
n—40 are multiplied by very small quantities, and I think it may safely be assumed

3
- that the system would pass through the critical phase where };%—l—n: 40 with sufficient

rapidity to prevent the nutation becoming large.

If we were to go to higher orders of approximation in the disturbing forces, it is
clear that we should meet with an infinite number of critical phases, but the coefficients
representing the amplitudes of the resulting nutations would be multiplied by such
small quantities that they may safely be neglected.

§ 18. The wnitial condition of the earth and moon.*

It is now supposed that, when the earth’s rotation has been tracked back to where
it is equal to twice the moon’s orbital motion, the obliquity to the plane of the lunar
orbit has become zero. Then it is clear that, as long as there is any relative motion
of the earth and moon, the tidal friction and reaction must continue to exist, and n
and £ must tend to an equality. The previous investigation shows also that for small
viscosity, however nearly n approaches £2, the position of zero obliquity is dynamically
stable.

As n is approaching £2, the changes must have taken place more and more slowly in
time. For if the earth was a cooling spheroid, it is unreasonable to suppose that the
process of becoming less stiff in consistency (which has hitherto been supposed to be
taking place, as we go backwards in time) could ever have been reversed ; and if it
were not reversed, then the lunar tides must have lagged by less and less, as more and
more time was given by the slow relative motion of the two bodies for the moon’s
attraction to have its full effect. Hence the effects of the sun’s attraction must again
become sensible, after passing through a phase of insensibility—a phase perhaps short
in time, but fertile in changes in the system. I shall not here make the attempt to
trace the reappearance of these solar terms.

It is, however, possible to make a rough investigation of what must have been the
initial state from which the earth and moon started the course of development, which
has been tracked back thus far. To do this, it is only necessary to consider the equa-
tion of conservation of moment of momentum.

* For further consideration of this subject, see a paper on the “ Secular Effects of Tidal Friction,”

¢ Proc. Roy. Soc.,” No. 197, 1879. The arithmetic of this section has been recomputed since the paper
was presented.
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When the obliquity is neglected, that equation may be written 3: 14+ p,{ 1 —<%ﬁ>§},
and it is proposed to find what values of n would make n equal to 2.

In the course of the above investigation four different starting points were taken,
viz.: those at the beginning of each period of integration. There are objections to
taking any one of these, to give the numerical values required for the solution of the
above equation ; for, on the one hand, the errors of each period accumulate on the
next, and therefore it is advantageous to take one of the early periods; whilst, on the
other hand, in the early periods the values of the quantities are affected by the sensi-
bility of the solar terms, and by the obliquity of the ecliptic. The beginning of the
fourth period was chosen, because by that time the solar terms had become insigni-
ficant. At that epoch I found log n,=2384753, when the present tropical year is the
unit of time, and p='6659, p being the ratio of the orbital moment of momentum
to the earth’s moment of momentum ; also log s=539378—10, s being a constant.
Now put @*=n=4, and we have

at—(1 —l—,u,)nox-i—%:O
Then substituting the numerical values,

' —=11727x440385=0

This equation has two real roots, one of which is nearly equal to /11727, and the
other to 40385+11727. By HorNER’S method these roots are found to be 21-4320
and 34559 respectively. These are the two values of the cube root of the earth’s
rotation, for which the earth and moon move round as a rigid body.

The first gives a day of 5 hours 36 minutes, and the second a day of about
554 m. s. days.

The latter is the state to which the earth and moon tend, under the influence of
tidal friction (whether of oceanic or bodily tides) in the far distant future. TFor this case
TromsoN and TArr give a day of 48 of our present days;* the discrepancy between
my value and theirs is explicable by the fact that they are considering a heterogeneous
earth, whilst I treat a homogeneous one. Since on the hypothesis of heterogeneity the
earth’s moment of inertia is about $Ma? whilst on that of homogeneity it is Ma?, and
since the 2 which occurs in the quantity s enters by means of the expression for the
earth’s moment of inertia, it follows that in my solution u has been taken too small in
the proportion 5:6. Hence if we wish to consider the case of heterogeneity, we must
solve the equation x'—12664x+448462=0. The two roots of this equation are such
that they give as the corresponding lengths of the day, 5 hours 16 minutes and 404 days
respectively. The remaining discrepancy (between 40 and 48) is doubtless due in part

% ¢Nat. Phil.,” § 276. They say:—* It is probable that the moon, in ancient times liquid or viscous in

its outer layer or throughout, was thus brought to turn always the same face to the earth.” 1In the new
edition (1879) the ultimate effects of tidal friction are considered,
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to the crude method of amending the solution, but also to the fact that they partly in-
clude the obliquity in one way, whilst I partly include it in another way, and I include
a large part of the solar tidal friction whilst they neglect it. It is interesting to note
that the larger root, which gives the shorter length of day, is but little affected by the
consideration of the earth’s heterogeneity.

With respect to the second solution (56 days), it must be remarked that the sun’s
tidal friction will go on lengthening the day even beyond this point, but then the
lunar tides will again come into existence, and the lunar tidal friction will tend in part
to counteract the solar. The tidal reaction will also be reversed, so that the moon
will again approach the earth. Thus the effect of the sun is to make this a state of
dynamical instability.

The first solution, where both the day and month are 5 hours 36 minutes long, is
the one which is of interest in the present inquiry, for this is the initial state towards
which the integration has been running back.

* This state of things is one of dynamical instability, as may be shown as follows :—

First consider the case where the sun does not exist. Suppose the earth to be
rotating in about 53 hours, and the moon moving orbitally around it in a little less
than that time. Then the motion of the moon relatively to the earth is consentaneous
with the earth’s rotation, and therefore the tidal friction, small though it be, tends to
accelerate the earth’s rotation ; the tidal reaction is such as to tend to retard the moon’s
linear velocity, and therefore increase her orbital angular velocity, and reduce her
distance from the earth. The end will be that the moon falls into the earth.

This subject is graphically illustrated in a paper on the Secular Effects of Tidal
Friction,” read before the Royal Society on June 19, 1879.

Secondly, take the case where the sun also exists, and suppose the system started
in the same way as before. Now the motion of the earth relatively to the sun is rapid,
and such that the solar tidal friction retards the earth’s rotation ; whilst the lunar
tidal friction is, as before, such as to accelerate the rotation.

Hence if the viscosity be very large the earth’s rotation may be accelerated, but if it
be not very large it will be retarded. The tidal reaction, which depends on the lunar
tides alone, continues negative, and the moon approaches the earth as before. Thus
after a short time the motion of the moon relatively to the earth is more rapid than
in the previous case, whatever be the ratio between solar and lunar tidal friction.
Hence in this case the moon will fall into the earth more rapidly than if the sun did
not exist, and the dynamical instability is more marked.

If, however, the day were shorter than the month, the moon must continually recede
from the earth, until it reaches the outer limit of a day of 56 m. s. days.

There is one circumstance which might perhaps decide that this should be the
direction in which the equilibrium would break down ; for the earth was a cooling

* From here to the end of the section a good many alterations have been made since the paper was
presented.—July 5, 1879,
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body, and therefore probably a contracting one, and therefore its rotation would tend
to increase. Of course this increase of rotation is partly counteracted by the solar
tidal friction, but on the present theory, the mere existence of the moon seems to show
that it was not more than counteracted, for if it had been so the moon must have been
drawn into and confounded with the earth.

This month of 5 hours 36 minutes corresponds to a lunar distance of 252 earth’s
mean radii, or about 10,000 miles; the month of 5 hours 16 minutes corresponds to
2:39 earth’s mean radii; so that in the case of the earth’s homogeneity only
6,000 miles intervene between the moon’s centre and the earth’s surface, and even
this distance would be reduced if we treated the earth as heterogeneous. This small
distance seems to me to point to a break-up of the earth-moon mass into two bodies at
a time when they were rotating in about 5 hours; for of course the precise figures
given above cannot claim any great exactitude (see also Section 23).

It 1s a material circumstance in the conditions of the breaking-up of the earth into
two bodies to consider what would have been the ellipticity of the earth’s figure when
rotating in 5% hours. Now the reciprocal of the ellipticity of a homogeneous fluid or
viscous spheroid varies as the square of the period of rotation of the spheroid. The
reciprocal of the ellipticity for a rotation in 24 hours is 232, and therefore the reciprocal
of the ellipticity for a rotation in 5% hours is (1) of 282=4''y X 232=12°2.

Hence the ellipticity of the earth when rotating in 5% hours is y%5th.

The conditions of stability of a rotating mass of fluid are as yet unknown, but
when we look at the planets Jupiter and Saturn, it is not easy to believe that an
ellipticity of +'5th is sufficiently great to cause the break-up of the spheroid.

A homogeneous fluid spheroid of the same density as the earth has its greatest
ellipticity compatible with equilibrium when rotating in 2 hours 24 minutes.™

The maximum ellipticity of all fluid spheroids of the same density is the same, and
their periods of rotation multiplied by the square root of their densities is a function of
the ellipticity only. Hence a spheroid, which rotates in 4 hours 48 minutes, will be in
limiting equilibrium if its density is (%)* or 4 of that of the earth. If this latter
spheroid had the same mass as the earth, its radius would be &/4 or 159 of that of
the earth. If therefore the earth had a radius of 6,360 miles, and rotated in 4 hours
48 minutes, it would just have the maximum ellipticity compatible with equilibrium.
It is, however, by no means certain that instability would not have set in long before
this limiting ellipticity was reached.

In Part ITL T shall refer to another possible cause of instability, which may perhaps
be the cause of the break-up of the earth into two bodies.

It is easy to find the minimum time in which the system can have passed from this
initial configuration, where the day and month are both 5% hours, down to the present

* Prarr’s ¢ Fig. of Earth,” 2nd edition., Arts. 68 and 70.
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condition. If we neglect the obliquity of the ecliptic, the equation (57) of tidal
reaction, when adapted to the case of a viscous spheroid, becomes

At __
Mg = g sm de;

Now it i3 clear that the rate of tidal reaction can never be greater than when

sin 4¢,=1, when the lunar semi-diurnal tide lags by 224°. Then since 7= %;%, we shall

obtain the minimum time by integrating the equation

dt

gno 12
(ZE f

Whence
2p 13
—i= 13 =? ( ¢ )

Now é= <—> and we have found by the solution of the biquadratic that the initial con- .

dition is given by 2'=21'4320 ; also with the present value of the month £2;}=438,
the present year being in both cases the unit of time. Hence it follows that £ is very

nearly ‘2, and £'3 may be neglected compared with unity. Thus—t—Ql—'; %’

Now u=4'007 and g . is 86,844,000 years.

Hence —t=53,540,000 years.

Thus we see that tidal reaction is competent to reduce the system from the initial
state to the present state in something over 54 million years.

The rest of the paper is occupied with the consideration of a number of miscellaneous
points, which it was not convenient to discuss earlier.

§ 19. The change vn the length of year.

The effects of tidal reaction on the earth’s orbit round the sun have been neglected ;
I shall now justify that neglect, and show by how much the length of the year may
have been altered.

It is easy to show that the moment of momentum of the orbital motion of the moon
and earth round their common centre of inertia is é—g%’ where C is the earth’s moment of
inertia, and s=%[<£;£>2(1+v)T.

The moment of momentum of the earth’s rotation is obviously Cn. The normal

to the lunar orbit is inclined to the earth’s axis at an angle ¢. Hence the resultant
moment of momentum of the moon and earth is

1 2n 0
C {n?+(8m)2+5—0—% cos @}

MDCCCLXXIX. 3 U
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The change in this quantity from one epoch to another is the amount of moment
of momentum of the moon-earth system which has been destroyed by solar tidal
friction. This destroyed moment of momentum reappears in the form of moment of
momentum of the moon and earth in their orbital motion round the sun.

Now at the beginning of the integration of Section 17, that is to say at the present
time, I find that when the present year is taken as the unit of time, the resultant
moment of momentum of the moon and earth is 11369 C.

At the end of the third period of integration (after which the solar terms were
neglected), and when the obliquity has become 15° 22, I find the same quantity to be
11625 C.

Hence the loss of moment of momentum 1s 256 C., or 1024 Ma?

Now at the present time the moment of momentum of the moon and earth in their
orbit is (M- +m)n,o,2=Ma2.l$}<g>2!2,; g is clearly the sun’s parallax, and with the

present unit of time £2, is 2m.

Hence the loss of moment of momentum is equal to the present moment of
1024

momentum of orbital motion multiplied by "o 1—_7;7} (sun’s parallax)?.

But the moment of momentum of the earth’s and moon’s orbital motion round the

sun varies as £2,7%; hence the loss of moment of momentum corresponding to a change

. .1 3 .
of 2, to 2,480, is the present moment of momentum multiplied by ¥ .(Z,, whence it

/

is clear that
80, 1024 v
0,7 ° 2 14w

« X (sun’s parallax)?,

/

. . 8
But the shortening of the year is b

as 8”8, we find that at the end of the third period of integration the year was shorter

of a year; taking therefore the sun’s parallax

/

than at present by

1024 82 <8'87r

3 X X 53X\ 648,000

)
33 > X 36525 X 86,400 seconds,

which will be found equal to 2:77 seconds.

Thus the solar tidal reaction had only the effect of lengthening the year by 2% seconds,
since the epoch specified as the end of the third period of integration. The whole
change in the length of year since the initial condition to which we traced back the
moon would probably be very small indeed, but it is impossible to make this assertion
positively, because, as observed above, the solar effects must have again become sensible,
after passing through a period of insensibility.
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§20. Terms of the second order in the tide-generating potential.

The whole of the previous investigation has been conducted on the hypothesis that
the tide-generating potential, estimated per unit volume of the earth’s mass, is
wrr¥(cos? PM—%),* but in fact this expression is only the first term of an infinite
series. I shall now show what kind of quantities have been neglected by this treat-
ment. According to the ordinary theory, the next term of the tide-generating
potential is

3
V2=w”£<§> 2 cos® PM—$ cos PM)

Although for my own satisfaction I have completely developed the influence of this
term in a similar way to that exhibited at the beginning of this paper, yet it does not
* seem worth while to give so long a piece of algebra ; and I shall here confine myself to
the consideration of the terms which will arise in the tidal friction from this term in
the potential, when the obliquity is neglected. A comparison of the result with the
value of the tidal friction, as already obtained, will afford the requisite information as
to what has been neglected.
Now when the obliquity is put zero (see Plate 36, fig. 1),

cos PM=sin 6 sin(¢— o)
where o is written for n—£ for brevity. Then

cos® PM =2 sin® f sin (¢ — ) — % sin® fsin 3(¢p—w)

and
cos® PM —£ cos PM=-; sin (1 —5 cos? §) sin (¢p—w) —% sin® 0 sin 3(¢p—w).
Then since
”—7: ,): 3§— 743§
v (c 2= 3
therefore

V2+w;fr3= — % sin’ 0 sin 8(p— ) 4L sin H(1 —5 cos? f) sin (¢—w)

If sin 3(¢p—w) and sin (p—w) be expanded, we have V, in the desired form, viz.: a
series of solid harmonics of the third degree, each multiplied by a simple time har-
monic.. Now if wr3S; cos (vt47) be a tide-generating potential, estimated per unit
volume of a homogeneous perfectly fluid spheroid of density w, S; being a surface har-
monic of the third order, then the equilibrium tide due to this potential is given by

Tad, () . . . .
o= 4—;&3 cos (vt-+1), or &=E§ S;cos (vt+m). Hence just as in Section 2, the tide-

* See Section 1.
3 U2
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generating potential of the third order due to the moon will raise tides in the earth,
when there is a frictional resistance to the internal motion, given by

o —170-;?[ —I%F’Sin?’ﬂsin3(¢-—-w+f)—l—;};F’sin0(1-—5coszﬁ)si11(gb-w—|7f’):!

Now ¢ is a surface harmonic of the third order, and therefore the potential of this
layer of matter, at an external point whose coordinates are r, 0, ¢, is

Hence the moment about the earth’s axis of the forces which the attraction of the
3 Mma do
7 T qu

ﬂ_M 2_._wg

distorted spheroid exercises on a particle of mass m, situated at », 6, ¢, is

3 Mma,

Now if this mass be equal to that of the moon, and r=¢, then "

where, as before, C is the moment of inertia of the earth.
Hence the couple §3,, which the moon’s attraction exercises on the earth, is given
d

by ﬁz_——-—- e where after differentiation we put 0—— = and ¢——+w
Now
_—Z%'—_ é [3F sin®0 cos 3(p— w4/ ) —1F sin §(1—5 cos®d) cos (p—w+/")]
Hence
%“%E@) —iFCOS<“+3f> COS< -|-f’>

=3 Fsin 3f+1F sinyf”

In the case of viscosity
F=cos 3f, F'=cos [’
Therefore

“i%-z <%>2 2 <~~— sin 64 & sin 2f’>

Now if the obliquity had been neglected, the tidal friction §2,, due to the term of

2
the first order in the tide-generating potential, would be given by @_1‘2 sin 4e,.

Hence
Po__ 1 [2\*/5sin 6f+ sin 27
£, 8\¢ sin 4e;

That is to say, this is the ratio of the terms neglected previously to those included.
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Now according to the theory of viscous tides,™

2441 (30) 4, 19y
tan 3f— —~‘—3 WU—TD_(E}CO) 9gwa
where v is the coefficient of viscosity.
2
But throughout the previous work we have written p——‘lgc%%.

3
? and similarly tan f =222,

Hence tan 3/=2%2-

.

2
Also tan 2e1=7w.

I will now consider two cases :~—
1st. Suppose the viscosity to be small, then f; /7, € are all small, and

sin 6/ tan 3/
sin4e, tan 2¢,

sin 2" tan /7
sin 4e; tan 2¢,

2
2y aofa
=19
1

2nd. Suppose the viscosity very great, then 3f, f7, 2¢, are very nearly equal to
;—r, and tan g-—af):%g , tan <—-——f > 2—95’ tan <——2€> -—, 8o that we have approm-

—22 3 2
19X2) 1

oo

X

20—

Therefore

20’
mately
sin 6 sin (w—6f) _ —19y2
sin e, sin (m—4e)” 2273
and similarly
sin 2/
sin 4:61_;[2—% X2

So that

Hence it follows that the terms of the second order may bear a ratio to those of the
2 2 2 2
first order lying between 33 <0~Z> ,or 116 < > and 5§ <a> or 576 < >

Now at the end of the fourth period of integration in the solution of Section 15, (—)—f or

the moon’s distance in earth’s mean radii was 9; hence the terms of the second
order in the equation of tidal friction must at that epoch lie in magnitude between
s5th and 11yst of those of the first order. It follows, therefore, that even at that
stage, when the moon is comparatively near the earth, the effect of the tides of the
second order (i.e., of the third degree of harmonics) is insignificant, and the neglect of
them 1s justified.

In the case of those terms of this order, which affect the obliquity, a very similar
relationship to the terms of the lower order would be found to hold good.

# ¢ Bodily Tides,” &c., Phil, Trans., 1879, Part I., Section 5,
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§ 21. On certain other small terms.

It will be well to advert to certain terms, the neglect of which might be suspected
of vitiating my results.

According to the hypothesis of the plastic nature of the earth’s mass, that body
must have been a figure of equilibrium at every time throughout the series of
changes which are to be followed out. In consequence of tidal friction the earth’s
rotation is diminishing, and therefore its ellipticity (which by the ordinary theory is

2
{—7—%> is also diminishing; this change of figure might be supposed to exercise a

material influence on the results, but I will now show that in one respect at least its
effects are unimportant.

. 2 . —A . .
In a previous paper® I showed that, neglecting ¢ compared with unity, when

A
the earth’s figure changed symmetrically with respect to the axis of rotation,

di T+T
== O “8in ¢ cos z ((/—~A)

Now if e be the ellipticity of figure

C—A=2Mae
So that
14, de b na dn n
A T R T
and therefore
%:T; sin 7 cos % %—

4
9& and since 2 sin ¢ cos ¢ 1s
107’ Cn

of the same order of magnitude as g (on which the changes of obliquity have been

shown to depend), it follows that th1s term is fairly negligeable compared with those
already included in the equations. As far as it goes, however, this term tends in the
direction of increasing the obliquity with the time.t

* ¢« On the Influence of Greological Changes,” &c., Phil. Trans, Vol. 167, Part 1., page 272, Section 8.
The notation is changed, and the equation presented in a form suitable for the present purpose.

+ In a paper in the ¢ Phil. Mag.,” March, 1877, I suggested that the obliquity might possibly be due to
the contraction of the terrestrial nebula in cooling; I there neglected tidal friction and assumed the con-
servation of moment of momentum to hold good for the earth by itself, so that the ellipticity was con-
tinually increasing with the time. I did not at that time perceive that this increase of ellipticity was
antagonistic to the effects of contraction. Though the work of that paper is correct, as I believe, yet the
fundamental assumption is incorrect, and therefore the results are not worthy of attention,
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[It will however appear, I believe, that this secular change of ellipticity of the
earth’s figure will exercise an important influence on the plane of the lunar orbit and
thereby will affect the secular change in the obliquity of the ecliptic. The investiga-
tion of this point is however as yet incomplete.]*
The other small term which I shall consider arises out of the ordinary precession,
together with the fact that the tide-generating force diminishes with the time on
account of the tidal reaction on the moon.

The differential equations which give the ordinary precession are in effect (compare
equations (26))

oy C=A sin ¢ cos ¢ sin %
a— T

dog _ _O=4 sin 7 cos 7 cos
F7s

and they give rise to no change of obliquity if  be constant, but
T ag
7=g%=70{1—6<2t—)t}

Hence as far as regards the change of obliquity the

when ¢ is small.

C—A 5na . n?
— P = 1 .
Also o =e= PP

equations may be written

do; 3Tt [dE\ . . ..
7=  \a S cose tsinn

d 3rm?/d . . .
S <—§> sin ¢ cos 2 ¢ cos n
dt q

dt

Then if we regard all the quantities, except #, on the right-hand sides of these
equations as constants and integrate, we have

BrofdE\ . . .. :
‘”1"-"‘?(5?) sin ¢ cos ¢{nt cos n— sin n}

w,= %( g) sin ¢ cos ¢{nt sin n- cos n}

And if these be substituted in the geometrical equations (1) we have

dt—gSIn CS?/dt

* Added July 3, 1879.
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Now by comparing this with the small term due to the secular change of figure of
the earth, we see that it is fairly negligeable, being of the same order of magnitude as
that term. As far as it goes, however, it tends to increase the obliquity of the ecliptic.

§ 22. The change of obliquity and tidal friction due to an annular satellite.

Conceive the ring to be rotating round the planet with an angular velocity £, let its

radius be ¢, and its mass per unit length of its arc —2—%—0, so that its mass is m. Let ¢l be

the length of the arc measured from some point fixed in the ring up to the element
¢dl; and let £2¢ be the longitude of the fixed point in the ring at the time ¢. Let 8V

be the tide-generating potential due to the element %L_Sl. Then we have by (5)

5V - wzég’;(i’lsz) — (& =) 2670 — e

Where the suffixes to the functions indicate that 2--7 is to be written for 2. Then
integrating all round the ring from /=0 to /=2 it is clear that

v

wTre

= —p?¢* sin® 0 cos 2(p—n) 4 2pq(p*—¢*) sin 6 cos 6 cos (¢—mn)
+ (§—cos? O)3(1—6p¢’)

which is the tide-generating potential of the ring.
Hence, as in Section 2, the form of the tidally-distorted spheroid is given by (9),
save that K, B, E'\, F,, £ are all zero. Also, as in that section, the moments of

the forces which the tidally-distorted spheroid exerts on the element of ring are
%(%N)Mg <77%2— ég%), &c., &c., where ¢r, nr, {r are put equal to the rectangular
coordinates of the element of ring, whose annular coordinate is /.

Now if @, y, z are the direction cosines of the element, equatlons (7) are simply
modified by £ being written 247 Hence the couples due to one element of ring
may be found just as the whole couples were found before, and the integrals of the
elementary couples from I=0 to 2w are the desired couples due to the whole ring.
Now a little consideration shows that the results of this integration may be written
down at once by putting E,, E,, E'\, Ey, £” zero in (15), (16), and (21). Thus in
order to determine the change of obliquity and the tidal friction due to an annular
satellite, we have simply the expressions (33) and (34), save that 7r, must be replaced
by L2

It thus appears that an annular satellite causes tidal friction in its planet, and that
the obliquity of the planet’s axis to the ring tends to diminish, but both these
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effects are evanescent with the obliquity. Since this ring only raises the tides which
are called sidereal semi-diurnal and sidereal diurnal, and since we see by (57),
Section 14, that tidal reaction is independent of those tides, it follows that there is
no tangential force on the ring tending to accelerate its linear motion. If, however,
the arc of the ring be not of uniform density, there is a slight tendency for the lighter
parts to gain on the heavier, and the heavier parts become more remote from the
planet than the lighter.

§23. Double tidal reaction.

Throughout the whole of this investigation the moon has been supposed to be
merely an attractive particle, but there can be no doubt but that, if the earth was
plastic, the moon was so also. To take a simple case, I shall now suppose that both
the earth and moon are homogeneous viscous spheres revolving round their common
centre of inertia, and that the moon is rotating on her own axis with an angular
velocity , and that their axes are parallel and perpendicular to the plane of their
orbit. Then the whole of the argument with respect to the earth as disturbed by
the moon, may be transferred to the case of the moon as disturbed by the earth.

All symbols which apply to the moon will be distinguished from those which apply
to the earth by an accent.

Then from (21) or (43) we have

B 1 3 /
G EgsmAGL (89)
Now
, 31\([ wad
T T s
and
,__Qg’__Z,r w
g = 50T ba w w
So that
7’2 wa? \3 7
'g’ po— w/72 g . » B ' . Ny . s . . (90)
Also
O wd?
C  we
and therefore
/ 2 2
R ™ wia
- — 1 ’
—= — sin 4e
5 2 g 9.,/ 1
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Now the force on the moon tangential to her orbit, results from a double tidal

reaction. By the method employed in Section 14, the tangential force due to the
earth’s tides is

T=4‘:@=g T sin de,
7 2r Q

and similarly the tangential force due to the moon’s tides is

and the whole tangential force is (T+T").
Hence following the argument of that section, the equation of tidal reaction becomes

;rlg %g [sm e+ — ,sm 461]

Then taking the moon’s apparent radius as 16’, and the ratio of the earth’s mass to

that of the moon as 82, we have %:3'567 and 1—”,:1'806 (so that taking w as 5%, the

specific gravity of the moon is 8), and henee —11 64.

At first sight it would appear from this that the effect of the tides in the moon was
nearly twelve times as important as the effect of those in the earth, as far as concerns
the influence on the moon’s orbit, and hence it would seem that a grave oversight has
been made in treating the moon as a simple attractive particle; a little consideration
will show, however, that this is by no means the case.

Suppose that v, v are the coefficients of viscosity of the moon and earth respec-
tively ; then the only tides which exist in each body being those of which the speeds
are 2(w—41), 2(n—42) in the moon and earth respectively,

tan 2¢',= 19v ,(a: /{2) and tan Zelzw
g'a'w gaw
But
_ w'a\?
g ‘o/w —gOLw<jL'UZL‘>
and hence
, - v
tan 2¢ 1__] v(ﬂ cc) tan 2¢,

Tt will be found that <-—> =41'10. It is also almost certain that v must for a
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long time be greater than v, because the moon being a smaller body must have
stiffened quicker than the earth. Hence unless w—£ is very much less than n—u0,
€, must be larger than €. Therefore if in the early stages of development the earth
had a small viscosity, it is probable that the effects of the moon’s tides on her own
orbit must have had a much more important influence than had the tides in the earth.
I shall now show, however, that this state of things must probably have had so short
a duration as not to seriously affect the investigation of this paper. By (89) and (90)
we have, as the equation which determines the rate of tidal friction reducing the
moon’s rotation round her axis,
o 2

wa'?

dt . ®g
02\ 3
Now < ; /2> ==12,148 ; and hence, for the same values of €; and ¢, the moon’s rotation

round her axis is reduced 12,000 times as rapidly as that of the earth round its axis,
and therefore in a very short period the moon’s rotation round her axis must have
been reduced to a sensible identity with the orbital motion. As w becomes very
nearly equal to £2, sin 4€; becomes very small. Hence the term in the equation of tidal
reaction dependent on the moon’s own tides must have become rapidly evanescent.
Now while this shows that the main body of our investigation is unaffected by the
lunar tide, there is one slight modification of them to which it leads.

In Section 18 we traced back the moon to the initial condition, when her centre
was 10,000 miles from the earth’s centre. If lunar tidal friction had been included,
this distance would have been increased ; for the coefficient of x in the biquadratic

(viz.: 11,727) would have to be diminished by (w—wo) No

Toooth, and the unit of time being the year, it follows that we should have to suppose
an enormously rapid primitive rotation of the moon round her axis, to make any
sensible difference in the configuration of the two bodies when her centre of inertia
moved as though rigidly connected with the earth’s surface.

The supposition of two viscous globes moving orbitally round their common centre
of inertia, and one having a congruent and the other an incongruent axial rotation,
would lead to some very curious results.

§24. Secular contraction of the earth.*

If the earth be contracting as it cools, it follows, from the principle of conservation
of moment of momentum, that the angular velocity of rotation is being increased. Sir
Wirriam THOMSON has, however, shown that the contraction (which probably now
only takes place in the superficial strata) cannot be sufficiently rapid to perceptibly
counteract the influence of tidal friction at the present time.

* Rewritten in July, 1879.
3x2
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The enormous height of the lunar mountains compared to those in the earth seems,
however, to give some indications that a cooling celestial orb must contract by a
perceptible fraction of its radius after it has consolidated.*  Perhaps some of the
contraction might be due to chemical combinations in the interior, when the heat had
departed, so that the contraction might be deep-seated as well as superficial.

It will be well, therefore, to poiut out how this contraction will influence the initial
condition to which we have traced back the earth and moon, when they were found
rotating as parts of a rigid body in a little more than 5 hours.

Let C, C) be the moment of inertia of the earth at any time, and initially. Then
the equation of conservation of moment of momentum becomes

a1 r=(a))

And the biquadratic of Section 18 which gives the initial configuration becomes

Ono 90)_.
The required root of this equation is very mnearly equal to [( 0%01. Now

Gy

a*=10 ; hence 2 is nearly equal to (14 ) But in Section 18, when C was equal

to Cy, it was nearly equal to (14pu)n,,. Therefore on the present hypothesis, the value

* Suppose a sphere of radius a to contract until its radius is a+ 8a, but that, its surface being incom-
pressible, in doing so it throws up n conical mountains, the radius of whose bases is b, and their height %,

and let b be large compared with 4. The surface of such a cone is 7b./k?+ b?=m=(b*+ Lh?). Hence the
sxcess of the surface of the cone above the area of the base is 3712 and 4draP=4r(a+ da)’+nrh?.
da h
Therefore — ==
erefore ——=1= )
Then suppose we have a second sphere of primitive radius o/, which contracts and throws up the same

. . da/ 8 I
number of mountains; then similarly — ﬂ,——ﬁ(h) and _ﬁ, T(ZC—L (7 a) . Now let these two spheres be
a a o et
the earth and moon. The height of the highest lunar mountain is 23,000 feet (GrANT’S ‘Physical Astron.,’
p- 229), and the height of the highest terrestrial mountain is 29,000 feet; therefore we may take
B a ha!
" =22 Also ;:‘2729 (HErscHEL’S ‘Astron.,” Section 404). Therefore ;—,a 29 of +2729="344, and
v )

ha'

h/
mountains are due to the crumpling of the surfaces of those globes in contraction, the moon’s radius has
been diminished by about eight times as large a fraction as the earth’s.

This is, no doubt, a very crude way of looking at the subject, because it entirely omits volcanic action
from consideration, but it seems to justify the assertion that the moon has contracted much more than
the earth, since both bodies solidified,

sa' b
) ='1183 or (7 ) =845. Hence — ——f =8%; whence it appears that, if both lunar and terrestrial
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Co,

O b

multiplied by o But in this initial state C is greater than C,; hence the periodic
0

of 2 as given in that section must be multiplied by and the periodic time must be

time when the two bodies move round as a rigid body is longer, and the moon is
more distant from the earth, if the earth has sensibly contracted since this initial
configuration.

1If, then, the theory here developed of the history of the moon is the true one, as I
believe it is, it follows that the earth cannot have contracted since this initial state by
so much as to considerably diminish the effects of tidal friction, and it follows that
Sir Wizriam THoMSON’S result as to the present unimportance of the contraction must
have always been true.

If the moon once formed a part of the earth we should expect to trace the changes
back until the two bodies were in actual contact. But it is obvious that the data at
our disposal are not of sufficient accuracy, and the equations to be solved are so com-
plicated, that it is not to be expected that we should find a closer accordance, than has
been found, between the results of computation and the result to be expected, if the
moon was really once a part of the earth.

It appears to me, therefore, that the present considerations only negative the
hypothesis of any large contraction of the earth since the moon has existed.

PART III.
Summary and discussion of results.™

The general object of the earlier or preparatory part of the paper is sufficiently
explained in the introductory remarks.

The earth is treated as a homogeneous spheroid, and in what follows, except where
otherwise expressly stated, the matter of which it is formed is supposed to be purely
viscous. The word “earth” is thus an abbreviation of the expression “a homogeneous
rotating viscous spheroid ;” also wherever numerical values are given they are taken
from the radius, mean density, mass, &c., of the earth.

The case is considered first of the action of one tide-raising body, namely, the moon.
To simplify the problem the moon is supposed to move in a circular orbit in the
ecliptict—that plane being the average position of the lunar orbit with respect to the

* This part has been altered in accordance with the several additions and alterations occurring above.
The results of subsequent investigations have modified the interpretation to be put on several of the results
here obtained. I have, moreover, had the advantage of discussing several points with Sir WiLLiam
TromsoN.—July 9, 1879.

t The effect of neglecting the eccentricity of the moon’s orbit is, that we underestimate the efficiency
of the tidal effects. Those effects vary as the inverse sixth power of 7 the radius vector, and if T be the
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earth’s axis. The case becomes enormously more complex if we suppose the moon to
move in an inclined eccentric orbit with revolving nodes. The consideration of the
secular changes in the inclination of the lunar orbit and of the eccentricity will form
the subject of another investigation.

The expression for the moon’s tide-generating potential is shown to consist of 13
simple tide-generating terms, and the physical meaning of this expansion is given in
the note to Section 8. The physical causes represented by these 13 terms raise 13 simple
tides in the earth, the heights and retardations of which depend on their speeds and on
the coeflicient of viscosity.

The 13 simple tides may be more easily represented both physically and analytically
as seven tides, of which three are approximately semi-diurnal, three approximately
diurnal, and one has a period equal to a half of the sidereal month, and is therefore
called the fortnightly tide.

Then by an approximation which is sufﬁ01ently exact for a great part of the investi-
gation, the semi-diurnal tides may be grouped together, and the diurnal ones also.
Hence the earth may be regarded as distorted by two complex tides, namely, the semi-
diurnal and diurnal, and one simple tide, namely, the fortnightly. The absolute heights
and retardations of these three tides are expressed by six functions of their speeds and
of the coefficient of viscosity (Sections 1 and 2).

When the form of the distorted spheroid is thus given, the couples about three axes
fixed in the earth due to the attraction of the moon on the tidal protuberances are
found. It must here be remarked that this attraction must in reality cause a tan-
gential stress between the tidal protuberances and the true surface of the mean
oblate spheroid. This tangential stress must cause a certain very small tangential
flow,* and hence must ensue a very small diminution of the couples. The diminution
of couple is here neglected, and the tidal spheroid is regarded as being instantaneously
rigidly connected with the rotating spheroid. The full expression for the couples on
the earth are long and complex, but since the nutations to which they give rise are
exceedingly minute, they may be much abridged by the omission of all terms except
such as can give rise to secular changes in the precession, the obliquity of the ecliptic,
and the diurnal rotation. The terms retained represent that there are three couples
independent of the time, the first of which tends to make the earth rotate about an
axis in the equator which is always 90° from the nodes of the moon’s orbit: this
couple affects the obliquity to the ecliptic ; second, there is a couple about an axis in

1(Td .
periodic time of the moon, the average value of & is T j pct If ¢ be the mean distance and e the eccen-

1 143624 86t

tricity of the orbit, this integral will be found equal to P G If the eccentricity be small the

1 54 1
average value of 6 is 5 (1+ ); if e is 5 thisis x3 of & There are obviously forces tending to

modify the eccentricity of the moon’s orbit.

% See Part I. of the next paper.
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the equator which is always coincident with the nodes: this affects the precession;
third, there is a couple about the earth’s axis of rotation, and this affects the length of
the day (Sections 8, 4,and 5). All these couples vary as the fourth power of the moon’s
orbital angular velocity, or as the inverse sixth power of her distance.

These three couples give the alteration in the precession due to the tidal movement,
the rate of increase of obliquity, and the rate at which the diurnal rotation is being
diminished, or in other words the tidal friction. The change of obliquity is in reality
due to tidal friction, but it is convenient to retain the term specially for the change of
rotation alone.

It appears that if the bodily tides do not lag, which would be the case if the earth
were perfectly fluid or perfectly elastic, then there is no alteration in the obliquity, nor
any tidal friction (Section 7). The alteration in the precession is a very small fraction
of the precession due to the earth considered as a rigid oblate spheroid. I have some
doubts as to whether this result is properly applicable to the case of a perfectly fluid
spheroid. At any rate, Sir WirLiam THoMsoN has stated, in agreement with this
result, that a perfectly fluid spheroid has a precession scarcely differing from that of a
perfectly rigid one. Moreover, the criterion which he gives of the negligeability of the
additional terms in the precession in a closely analogous problem appears to be almost
identical with that found by me (Section 7). I am not aware that the investigation on
which his statement is founded has ever been published. The alteration in the pre-
cession being insignificant, no more reference will be made to it. This concludes the
analytical investigation as far as concerns the effects on the disturbed spheroid, where
there is only one disturbing body.

The sun is now (Section 8) introduced as a second disturbing body. Its independent
effect on the earth may be determined at once by analogy with the effect of the moon.
But the sun attracts the tides raised by the moon, and wice versé. Now notwith-
standing that the periods of the sun and moon about the earth have no common
multiple, yet the interaction is such as to produce a secular alteration in the position
of the earth’s axis and in the angular velocity of its diurnal rotation. A physical
explanation of this curious result is given in the note to Section 8. T have dis-
tinguished this from the separate effect of each disturbing body, as a combined effect.

The combined effects are represented by two terms in the tide-generating potential,
. one of which goes through its period in 12 sidereal hours, and the other in a sidereal
day*; the latter being much more important than the former for moderate obliquities
to the ecliptic. Both these terms vanish when the earth’s axis is perpendicular to the
plane of the orbit.

As far as concerns the combined effects, the disturbing bodies may be conceived to be

* These combined effects depend on the tides which are designated as K; and K, in the British Asso-

ciation’s Report on Tides for 1872 and 1876, and which I have called the sidereal semi-diurnal and

" diurnal tides. For a general explanation of this result see the abstract of this paper in the ‘ Proceedings
of the Royal Society,” No. 191, 1878.
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replaced by two circular rings of matter coincident with their orbits and equal in mass
to them respectively. The tidal friction due to these rings is insignificant compared
with that arising separately from the sun and moon. But the diurnal combined effect
has an important influence in affecting the rate of change of obliquity. The combined
effects are such as to cause the obliquity of the ecliptic to diminish, whereas the
separate effects on the whole make it increase—at least in general (see Section 22).

The relative importance of all the effects may be seen from an inspection of Table I1L.,
Section 15.

Section 11 contains a graphical analysis of the physical meaning of the equations,
giving the rate of change of obliquity for various degrees of viscosity and obliquity.

Plate 36, figures 2 and 3, refer to the case where the disturbed planet is the earth,
and the disturbing bodies the sun and moon.

This analysis gives some remarkable results as to the dynamical stability or
instability of the system.

It will be here sufficient to state that, for moderate degrees of viscosity, the position
of zero obliquity is unstable, but that there is a position of stability at a high obliquity.
For large viscosities the position of zero obliquity becomes stable, and (except for a
very close approximation to rigidity) there is an unstable position at a larger obliquity,
and again a stable one at a still larger one.*

These positions of dynamical equilibrium do not rigorously deserve the name, since
they are slowly shifting in consequence of the effects of tidal friction ; they are rather
positions in which the rate of change of obliquity becomes of a higher order of small
quantities.

It appears that the degree of viscosity of the earth which at the present time would
cause the obliquity of the ecliptic to increase most rapidly is such that the bodily semi-
diurnal tide would be retarded by about 1 hour and 10 minutes; and the viscosity
which would cause the obliquity to decrease most rapidly is such that the bodily semi-
diurnal tide would be retarded by about 2% hours.

The former of these two viscosities was the one which I chose for subsequent
numerical application, and for the consideration of secular changes in the system.

Plate 36, fig. 4 (Section 11), shows a similar analysis of the case where there is only
one disturbing satellite, which moves orbitally with one-fifth of the velocity of rotation
of the planet. This case differs from the preceding one in the fact that the position of
zero obliquity is now unstable for all viscosities, and that there is always one other,
and only one other position of equilibrium, and that is a stable one.

This shows that the fact that the earth’s obliquity would diminish for large viscosity
is due to the attraction of the sun on the lunar tides, and of the moon on the solar
tides.

It is not shown by these figures, but it is the fact that if the motion of the satellite

* For a general explanation of some part of these results, see the abstract of this paper in the
¢ Proceedings of the Royal Society,” No. 191,1878.
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relatively to the planet be slow enough (viz.: the month less than twice the day), the
obliquity will diminish.

This result, taken in conjunction with results given later with regard to the evolu-
tion of satellites, shows that the obliquity of a planet perturbed by a single satellite
must rise from zero to a maximum and then decrease again to zero. If we regard the
earth as a satellite of the moon, we see that this must have been the case with the moon.

Plate 36, fig. 5 (Section 12), contains a similar graphical analysis of the various
values which may be assumed by the tidal friction. As might be expected, the tidal
friction always tends to stop the planet’s rotation, unless indeed the satellite’s penod
is less than the planet’s day, when the friction is reversed.

This completes the consideration of the effect on the earth, at any instant, of the
attraction of the sun and moon on their tides; the next subject is to consider the
reaction on the disturbing bodies.

Since the moon is tending to retard the earth’s diurnal rotation, it is obvious that
the earth must exercise a force on the moon tending to accelerate her linear velocity.
The effect of this force is to cause her to recede from the earth and to decrease her
orbital angular velocity. Hence tidal reaction causes a secular retardation of the
moon’s mean motion.

The tidal reaction on the sun is shown to have a comparatively small influence on
the earth’s orbit and is neglected (Sections 14 and 19).

The influence of tidal reaction on the lunar orbit is determined by finding the dis-
turbing force on the moon tangential to her orbit, in terms of the couples which have
been already found as perturbing the earth’s rotation; and hence the tangential force
is found in terms of the rate of tidal friction and of the rate of change of obliquity.

It appears that the non-periodic part of the force, on which the secular change in
the moon’s distance depends, involves the lunar tides alone.

By the consideration of the effects of the perturbing force on the moon’s motion, an
equation is found which gives the rate of increase of the square root of the moon’s
distance, in terms of the heights and retardations of the several lunar tides
(Section 14).

Besides the interaction of the two bodies which affects the moon’s mean motion,
there is another part which affects the plane of the lunar orbit ; but this latter effect
is less important than the former, and in the present paper is neglected, since the moon
is throughout supposed to remain in the ecliptic. The investigation of the subject will
however, lead to interesting results, since a complete solution of the problem of the
obliquity of the ecliptic cannot be attained without a simultaneous tracing of the
secular changes in the plane of the lunar orbit.

It appears that the influence of the tides, here called slow semi-diurnal and slow
diurnal, is to increase the moon’s distance from the earth, whilst the influence of the
fast semi-diurnal, fast diurnal, and fortnightly tide tends to diminish the moon’s dis-
tance ; also the sidereal semi-diurnal and diurnal tides exercise no effects in this

MDCCOLXXIX. 3Y
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respect. The two tides which tend to increase the moon’s distance are much larger
than the others, so that the moon in general tends to recede from the earth. The
increase of distance is, of course, accompanied by an increase of the moon’s periodic
time, and hence there is in general a true secular retardation of the moon’s motion.
But this change is accompanied by a retardation of the earth’s diurnal rotation, and a
terrestrial observer, taking the earth as his clock, would conceive that the angular
velocity of an ideal moon, which was undisturbed by tidal reaction, was undergoing a
secular acceleration. The apparent acceleration of the ideal undisturbed moon must
considerably exceed the true retardation of the real disturbed moon, and the difference
between these two will give an apparent acceleration.

It is thus possible to give an equation connecting the apparent acceleration of the
moon’s motion and the heights and retardations of the several bodily tides in the earth.

Now there is at the present time an unexplained secular acceleration of the moon of
about 4” per century, and therefore if we attribute the whole of this to the action of
the bodily tides in the earth, instead of to the action of ocean tides, as was done by
Apams and DELAUNAY, we get a numerical relation which must govern the actual
heights and retardations of the bodily tides in the earth at the present time.

This equation involves the six constants expressive of the heights and retardations of
the three bodily tides, and which are determined by the physical constitution of the
earth. No further advance can therefore be made without some theory of the earth’s
nature. Two theories are considered.

First, that the earth is purely viscous. The result shows that the earth is either
nearly fluid—which we know it is not—or exceedingly nearly rigid. The only traces
which we should ever be likely to find of such a high degree of viscosity would be in
the fortnightly ocean tide; and even here the influence would be scarcely perceptible,
for its height would be *992 of its theoretical amount according to the equilibrium theory,
whilst the time of high water would be only accelerated by six hours and a half.

It is interesting to note that the indications of a fortnightly ocean tide, as deduced
from tidal observations, are exceedingly uncertain, as is shown in a preceding paper,*
where [ have made a comparison of the heights and phases of such small fortnightly tides
as have hitherto been observed. And now (July, 1879) Sir WirLiam Taomson has
informed me that he thinks it very possible that the effects of the earth’s rotation may
be such as to prevent our trusting to the equilibrium theory to give even approximately
the height of the fortnightly tide. He has recently read a paper on this subject
before the Royal Society of Edinburgh.

With the degree of viscosity of the earth, which gives the observed amount of secular
acceleration to the moon, it appears that the moon is subject to such a true secular
retardation that at the end of a century she is 8”1 behind the place in her orbit which
she would have occupied if it were not for the tidal reaction, whilst the earth, considered
as a clock, is losing 13 seconds in the same time. This rate of retardation of the earth

* See the Appeundix to my paper on the “ Bodily Tides,” &c., Phil. Trans., Part L., 1879,
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is such that an observer taking the earth as his clock would conceive a moon, which
was undisturbed by tidal reaction, to be 7”1 in advance of her place at the end of a
century, But the actual moon is 8”1 hehind her true place, and thus our observer
would suppose the moon to be in advance 7'1—31 or 4” at the end of the century.
Lastly, the obliquity of the ecliptic is diminishing at the rate of 1° in 500 million
years.

The other hypothesis considered is that the earth is very nearly perfectly elastic. In
this case the semi-diurnal and diurnal tides do not lag perceptibly, and the whole of the
reaction is thrown on to the fortnightly tide, and moreover there is no perceptible tidal
frictional couple about the earth’s axis of rotation. From this follows the remarkable
conclusion that the moon may be undergoing a true secular acceleration of motion of
something less than 8”5 per century, whilst the length of day may remain almost un-
affected. Under these circumstances the obliquity of the ecliptic must be diminishing
at the rate of 1° in something like 130 million years.

This supposition leads to such curious results, that I investigated what state of
things we should arrive at if we look back for a very long period, and I found that
700 million years ago the obliquity might have been 5° greater than at present, whilst
the month would only be a little less than a day longer. The suppositions on which
these results are based are such that they necessarily give results more striking than
would be physically possible.

The enormous lapse of time which has to be postulated renders it in the highest
degree improbable that more than a very small change in this direction has been taking
place, and moreover the action of the ocean tides has been entirely omitted from
consideration,

The results of these two hypotheses show what fundamentally different interpreta-
tions may be put to the phenomenon of the secular acceleration of the moon.

Sir WiLLiam TroMmsoN also has drawn attention to another disturbing cause in the
fall of meteoric dust on to the earth.®

Under these circumstances, I cannot think that any estimate having any pretension
to accuracy can be made as to the present rate of tidal friction.

Since the obliquity of the ecliptic, the diurnal rotation of the earth, and the moon’s
distance change, the whole system is in a state of flux ; and the next question to be
considered is to determine the state of things which existed a very long time ago
(Part I1.). This involved the integration of three simultaneous differential equations;
the mathematical difficulties were, however, so great, that it was found impracticable
to obtain a general analytical solution. I therefore had to confine myself to a
numerical solution adapted to the case of the earth, sun, and moon, for one particular
degree of viscosity of the earth. The particular viscosity was such that, with the
present values of the day and month, the time of the lunar semi-diurnal tide was
vetarded by 1 hour and 10 minutes; the greatest possible lagging of this tide is

* ¢(lasgow Geological Society,” Vol. IIT. Address “ On Geological Time.”
3v2



530 MR. G. H. DARWIN ON THE PRECESSION OF A VISCOUS SPHEROID

3 hours, and therefore this must be regarded as a very moderate degree of visco-
sity. It was chosen because initially it makes the rate of change of obliquity a
maximum, and although it is not that degree of viscosity which will make all the
changes proceed with the greatest possible rapidity, yet it is sufficiently near that
value to enable us to estimate very well the smallest time which can possibly have
elapsed in the history of the earth, if changes of the kind found really have taken
place. This estimate of time is confirmed by a second method, which will be referred
to later.

The changes were tracked backwards in time from the present epoch, and for con-
venience of diction I shall also reverse the form of speech—e.g., a true loss of energy
as the time increases will be spoken of as a gain of energy as we look backwards.

I shall not enter at all into the mathematical difficulties of the problem, but shall
proceed at once to comment on the series of tables at the end of Section 15, which
give the results of the solution.

The whole process, as traced backwards, exhibits a gain of kinetic energy to the
system (of which more presently), accompanied by a transference of moment of
momentum from that of orbital motion of the moon and earth to that of rotation of
the earth. The last column but one of Table IV. exhibits the fall of the ratio ‘of the
two moments of momentum from 4:01 down to *44. The whole moment of momentum
of the moon-earth system rises slightly, because of solar tidal friction. The change is
investigated in Section 19.

Looked at in detail, we see the day, month, and obliquity all diminishing, and the
changes proceeding at a rapidly increasing rate, so that an amount of change which at
the beginning required many millions of years, at the end only requires as many thou-
sands. The reason of this is that the moon's distance diminishes with great rapidity ;
and as the effects vary as the square of the tide-generating force, they vary as the
inverse sixth power of the moon’s distance, or, in physical language, the height of the
tides increases with great rapidity, and so also does the moon’s attraction. But there
is a counteracting principle, which to some extent makes the changes proceed slower.
It is obvious that a disturbing body will not have time to raise such high tides in a
rapidly rotating spheroid as in one which rotates slowly. As the earth’s rotation
increases, the lagging of the tides increases. The first column of Table I. shows the
angle by which the crest of the lunar semi-diurnal tide precedes the moon; we see
that the angle is almost doubled at the end of the series of changes, as traced back-
wards. It is not quite so easy to give a physical meaning to the other columuns,
although it might be done. In fact, as the rotation increases, the effect of each tide
rises to a maximum, and then dies away ; the tides of longer period reach their maxi-
mum effect much more slowly than the ones of short period. At the point where I
have found it convenient to stop the solution (see Table 1V.), the semi-diurnal effect has
passed its maximum, the diurnal tide has just come to give its maximum effect, whilst
the fortnightly tide has not nearly risen to that point.
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As the lunar effects increase in importance (when we look backwards), the relative
value of the solar effects decreases rapidly, because the solar tidal reaction leaves the
earth’s orbit sensibly unaffected (see Section 19), and thus the solar effects remain nearly
constant, whilst the lunar effects have largely increased. The relative value of the
several tidal effects is exhibited in Tables IL. and IIL

Table IV. exhibits the length of day decreasing to a little more than a quarter of its
present value, whilst the obliquity diminishes through 9°.  But the length of the
month is the element which changes to the most startling extent, for it actually falls
to y4;th of its primitive value.

It is particularly important to notice that all the changes might have taken place in
57 million years; and this is far within the time which physicists admit that the earth
and moon may have existed. It is easy to find a great many vere cause for changes
in the planetary system ; but it is in general correspondingly hard to show that they
are competent to produce any marked effects, without exorbitant demands on the
efficiency of the causes and on lapse of time.

It is a question of great interest to geologists to determine whether any part of
these changes could have taken place during geological history. It seems to me that
this question must be decided by whether or not a globe, such as has been considered,
could have afforded a solid surface for animal life, and whether it might present a
superficial appearance such as we know it. These questions must, I think, be answered
in the affirmative, for the following reasons.

The coefficient of viscosity of the spheroid with which the previous solution deals is

given by the formula {'—g%tan 35° (see Section 11, (40)), when gravitation units of force

are used. This, when turned into numbers, shows that 2:055X 107 grams weight
are required to impart unit shear to a cubic centimeter block of the substance in
24 hours, or 2,055 kilogs. per square centimeter acting tangentially on the upper
face of a slab one centimeter thick for 24 hours, would displace the upper surfice
through a millimeter relatively to the lower, which is held fixed. In British units
this becomes,—134 tons to the square inch, acting for 24 hours on a slab an inch thick,
displaces the upper surface relatively to the lower through one-tenth of an inch. It
is obvious that such a substance as this would be called a solid in ordinary parlance,
and in the tidal problem this must be regarded as a rather small viscosity.

It seems to me, then, that we have only got to postulate that the upper and cool
surface of the earth presents such a difference from the interior that it yields with
extreme slowness, if at all, to the weight of continents and mountains, to admit the
possibility that the globe on which we live may be like that here treated of. 1If,
therefore, astronomical facts should confirm the argument that the world has really
gone through changes of the kind here investigated, I can see no adequate reason for
assuming that the whole process was pre-geological. Under these circumstances it
must be admitted that the obliquity to the ecliptic is now probably slowly decreasing;
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that a long time ago it was perhaps a degree greater than at present, and that it was
then nearly stationary for another long time, and that in still earlier times it was
considerably less.*

The violent changes which some geologists seem to require in geologically recent
times would still, T think, not follow from the theory of the earth’s viscosity.

According to the present hypothesis (and for the moment looking forward in time),
the moon-earth system is, from a dynamical point of view, continually losing energy
from the internal tidal friction. One part of this energy turns into potential energy
of the moon’s position relatively to the earth, and the rest developes heat in the
interior of the earth. Section 16 contains the investigation of the amount which has
turned to heat between any two epochs. The heat is estimated by the number of
degrees Fahrenheit, which the lost energy would be sufficient to raise the temperature
of the whole earth’s mass, if it were all applied at once, and if the earth had the specific
heat of iron.

The last column of Table IV, Section 15, gives the numerical results, and it appears
therefrom that, during the 57 million years embraced by the solution, the energy lost
suffices to heat the whole earth’s mass 1760° Fahr.

It would appear at first sight that this large amount of heat, generated internally,
must seriously interfere with the accuracy of Sir Wirriam THomMsoN’s investigation
of the secular cooling of the earth ;t+ but a further consideration of the subject in the
next paper will show that this cannot be the case.

There are other consequences of interest to geologists which flow from the present
hypothesis. As we look at the whole series of changes from the remote past, the
ellipticity of figure of the earth must have been continually diminishing, and thus the
polar regions must have been ever rising and the equatorial ones falling ; but, as the
ocean always followed these changes, they might quite well have left no geological
traces.

The tides must have been very much more frequent and larger, and accordingly the
rate of oceanic denudation much accelerated.

The more rapid alternations of day and night} would probably lead to more sudden
and violent storms, and the increased rotation of the earth would augment the violence
of the trade winds, which in their turn would affect oceanic currents.

Thus there would result an acceleration of geological action.

The problem, of which the solution has just been discussed, deals with a spheroid of

# In my paper “On the Effects of Geological Changes on the Earth’s Axis,” Phil. Trans. 1877, p. 271,
I arrived at the conclusion that the obliquity had been unchanged throughout geological history. That
result was obtained on the hypothesis of the earth’s rigidity, except as regards geological upheavals. The

result at which I now arrive affords a warning that every conclusion must always be read along with the
postulates on which it is based.

t ¢Nat. Phil.;” Appendix.

1 At the point where the solution stops there are just 1,300 of the sidereal days of that time in the
year, instead of 366 as at present. :
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constant viscosity ; but there is every reason to believe that the earth is a cooling
body, and has stiffened as it cooled. We therefore have to deal with a spheroid whose
viscosity diminishes as we look backwards.

A second solution is accordingly given (Section 17) where the viscosity is variable; no
definite law of diminution of viscosity is assumed, however, but it is merely supposed
that the viscosity always remains small from a tidal point of view. This solution gives
no indication of the time which may have elapsed, and differs chiefly from the preceding
one in the fact that the change in the obliquity is rather greater for a given amount of
change in the moon’s distance.

There is not much to say about it here, because the two solutions follow closely
parallel lines as far as the place where the former one left off. v

The first solution was not carried further, because as the month approximates in
length to the day, the three semi-diurnal tides cease to be of nearly equal frequencies,
and so likewise do the three diurnal tides; hence the assumption on which the solution
was founded, as to their approximately equal speeds, ceases to be sufficiently accurate.

In this second solution all the seven tides are throughout distinguished from one
another. At about the stage where the previous solution stops the solar terms have
become relatively unimportant, and are dropped out. It appears that (still looking
backwards in time) the obliquity will only continue to diminish a little more beyond
the point it had reached when the previous method had become inapplicable. For
when the month has become equal to twice the day, there is no change of obliquity ;
and for yet smaller values of the month the change is the other way.

This shows that for small viscosity of the planet the position of zero obliquity is
dynamically stable for values of the month which are less than twice the day, while
for greater values it is unstable; and the same appears to be true for very large vis-
cosity of the planet (see the foot-note on p. 500).

If the integration be carried back as far as the critical point of relationship between
the day and month, it appears that the whole change of obliquity since the beginning
is 9%°. '

The interesting question then arises—Does the hypothesis of the earth’s viscosity
afford a complete explanation of the obliquity of the ecliptic ? It does not seem at
present possible to give any very conclusive answer to this question ; for the problem
which has been solved differs in many respects from the true problem of the earth.

The most important difference from the truth is in the neglect of the secular changes
of the plane of the lunar orbit; and I now (September, 1879) see reason to believe
that that neglect will make a material difference in the results given for the obliquity
at the end of the third and fourth periods of integration in both solutions. It will
not, therefore, be possible to discuss this point adequately at present ; but it will be
well to refer to some other points in which our hypothesis must differ from reality.

I do not see that the heterogeneity of density and viscosity would make any very
material difference in the solution, because both the change of obliquity and the tidal



934  MR. G. H. DARWIN ON THE PRECESSION OF A VISCOUS SPHEROID,

friction would be affected pait passd, and therefore the change of obliquity for a given
amount of change in the day would not be much altered.

Although the effects of the contraction of the earth in cooling would be certainly
such as to render the changes more rapid in time, yet as the tidal friction would be
somewhat counteracted, the critical point where the month is equal to twice the day
would be reached when the moon was further from the earth than in my problem. I
think, however, that there is reason to believe that the whole amount of contraction
of the earth, since the moon has existed, has not been large (Section 24).

There is one thing which might exercise a considerable influence favourable to change
of obliquity. We are in almost complete ignorance of the behaviour of semi-solids
under very great pressures, such as must exist in the earth, and there is no reason to
suppose that the amount of relative displacement is simply proportional to the stress
and the time of its action. Suppose, then, that the displacement varied as some other
function of the time, then clearly the relative importance of the several tides might be
much altered. .

Now, the great obstacle to a large change of obliquity is the diurnal combined
effect (see Table IV., Section 15); and so any change in the law of viscosity which allowed
a relatively greater influence to the semi-diurnal tides would cause a greater change of
obliquity, and this without much affecting the tidal friction and reaction. Such a law
seems quite within the bounds of possibility. The special hypothesis, however, of
elastico-viscosity, used in the previous paper, makes the other way, and allows greater
influence to the tides of long period than to those of short. This was exemplified where
it was shown that the tidal reaction might depend principally on the fortnightly tide.

The whole investigation is based on a theory of tides in which the effects of inertia
are neglected. Now it will be shown in Part III. of the next paper that the effect
of inertia will be to make the crest of the tidal gpheroid lag more for a given height
of tide than results from the theory founded on the neglect of inertia. An analysis of
the effect produced on the present results, by the modification of the theory of tides
introduced by inertia, is given in the next paper.

On the whole, we can only say at present that it seems probable that a part of the
obliquity of the ecliptic may be referred to the causes here considered; but a complete
discussion of the subject must be deferred to a future occasion, when the secular
changes in the plane of the lunar orbit will be treated.

The question of the obliquity is now set on one side, and it is supposed that when
the moon has reached the critical point (where the month is twice the day) the
obliquity to the plane of the luvar orbit was zero. In the more remote past the
obliquity had no tendency to alter, except under the influence of certain nutations,
which are referred to at the end of Section 17.

The manner in which the moon’s periodic time approximates to the day is an
inducement to speculate as to the limiting or initial condition from which the earth
and moon started their course of development.
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So long as there is any relative motion of the two bodies there must be tidal
friction, and therefore the moon’s period must continue to approach the day. It would
be a problem of extreme complication to track the changes in detail to their end, and
fortunately it is not necessary to do so.

The principle of conservation of moment of momentum, which has been used
throughout in tracing the parallel changes in the moon and earth, affords the means of
leaping at once to the conclusion (Section 18). The equation expressive of that principle
involves the moon’s orbital angular velocity and the earth’s diurnal rotation as its two
variables ; and it is only necessary to equate one to the other to obtain an equation,
which will give the desired information.

As we are now supposed to be transported back to the initial state, I shall hence-
forth speak of time in the ordinary way; there is no longer any convenience in
speaking of the past as the future, and vice versd.

The equation above referred to has two solutions, one of which indicates that tidal
friction has done its work, and the other that it is just about to begin. Of the first I
shall here say no more, but refer the reader to Section 18.

The second solution indicates that the moon (considered as an attractive particle)
moves round the earth as though it were rigidly fixed thereto in 5 hours 36 minutes.
This is a state of dynamical instability ; for if the month is a little shorter than the day,
the moon will approach the earth, and ultimately fall into it ; but if the day is a little
shorter than the month, the moon will continually recede from the earth, and pass
through the series of changes which were traced backwards.

Since the earth is a cooling and contracting body, it is likely that its rotation would
increase, and therefore the dynamical equilibrium would be more likely to break down
in the latter than the former way.

The continuous solution of the problem is taken up at the point where the moon
has receded from the earth so far that her period is twice that of the earth’s rotation.

I have calculated that the heat generated in the interior of the earth in the course
of the lengthening of the day from 5 hours 36 minutes to 23 hours 56 minutes would
be sufficient, if applied all at once, to heat the whole earth’s mass about 8000° Fahr.,
supposing the earth to have the specific heat of iron (see Section 16). :

A rough calculation shows that the minimum time in which the moon can have
passed from the state where it had a period of 5 hours 36 minutes to the present state,
is 54 million years, and this confirms the previous estimates of time.

This periodic time of the moon corresponds to an interval of only 6,000 miles
between the earth’s surface and the moon’s centre. If the earth had been treated as
heterogeneous, this distance, and with it the common periodic time both of moon and
earth, would be still further diminished.

These results point strongly to the conclusion that, if the moon and earth were ever
molten viscous masses, then they once formed parts of a common mass.

We are thus led at once to the inquiry as to how and why the planet broke up.

MDCCCLXXIX. 3 z
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The conditions of stability of rotating masses of fluid are unfortunately unknown, and
it is therefore impossible to do more than speculate on the subject.

The most obvious explanation is similar to that given in LaPLAcE’S nebular hypo-
thesis, namely, that the planet being partly or wholly fluid, contracted, and thus rotated
faster and faster until the ellipticity became so great that the equilibrium was unstable,
and then an equatorial ring separated itself, and the ring finally conglomerated into a
satellite.  This theory, however, presents an important difference from the nebular
hypothesis, in as far as that the ring was not left behind 240,000 miles away from the
earth, when the planet was a rare gas, but that it was shed only 4,000 or 5,000 miles
from the present surface of the earth, when the planet was perhaps partly solid and
partly fluid.

This view is to some extent confirmed by the ring of Saturn, which would thus be a
satellite in the course of formation.

Tt appears to me, however, that there is a good deal of difficulty in the acceptance
of this view, when it is considered along with the numerical results of the previous
investigation.

At the moment when the ring separated from the planet it must have had the
same linear velocity as the surface of the planet; and it appears from Section 22 that
such a ring would not tend to expand from tidal reaction, unless its density varied
in different parts. Thus we should hardly expect the distance from the earth of
the chain of meteorites to have increased much, until it had agglomerated to a con-
siderable extent. It follows, therefore, that we ought to be able to trace back the
moon’s path, until she was nearly in contact with the earth’s surface, and was always
opposite the same face of the earth. Now this is exactly what has been done in the
previous investigation. But there is one more condition to be satisfied, namely, that
the common speed of rotation of the two bodies should be so great that the equilibrium
of the rotating spheroid should be unstable. Although we do not know what is the
limiting angular velocity of a rotating spheroid consistent with stability, yet it seems
improbable that a rotation in a little over 5 hours, with an ellipticity of one-twelfth
would render the system unstable.

Now notwithstanding that the data of the problem to be solved are to some extent
uncertain, and notwithstanding the imperfection of the solution of the problem here
given, yet it hardly seems likely that better data and a more perfect solution would
largely affect the result, so as to make the common period of revolution of the two
bodies in the initial configuration very much less than 5 hours.” Moreover we obtain
no help from the hypothesis that the earth has considerably contracted since the shed-
ding of the satellite, but rather the reverse ; for it appears from Section 24 that if the
earth has contracted, then the common period of revolution of the two bodies in the

#* This is illustrated by my paper on “The Secular Effects of Tidal Friction,” ¢ Proc. Roy. Soe.,” No. 19 7,
1879, where it appears that the “line of momentum” does not cut the “ curve of rigidity ” at a very small
angle, so that a small error in the data would not make a very large one in the solution.
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initial configuration must have been slower, and the moon morve distant from the earth.
This slower revolution would correspond with a smaller ellipticity, and thus the system
would probably be less nearly unstable.

The following appears to me at least a possible cause of instability of the spheroid
when rotating in about 5 hours. Sir WirLiam THoMSON has shown that a fluid spheroid
of the same mean density as the earth would perform a complete gravitational oscillation
in 1 hour 34 minutes. The speed of oscillation varies as the square root of the density,
hence it follows that a less dense spheroid would oscillate more slowly, and therefore a
spheroid of the same mean density as the earth, but consisting of a denser nucleus and
a rarer surface, would probably oscillate in a longer time than 1 hour 34 minutes. It
seems to be quite possible that two complete gravitational oscillations of the earth in
its primitive state might occupy 4 or 5 hours. But if this were the case, then the solar
semi-diurnal tide would have very nearly the same period as the free oscillation of
the spheroid, and accordingly the solar tides would be of enormous height.

Does it not then seem possible that, if the rotation were fast enough to bring the
spheroid into anything near the unstable condition, then the large solar tides might
rupture the body into two or more parts ? In this case one would conjecture that it
would not be a ring which would detach itself.

It seems highly probable that the moon once did rotate more rapidly round her own
axis than in her orbit, and if she was formed out of the fusion together of a ring of
meteorites, this rotation would necessarily result.

In Section 23 it is shown that the tidal friction due to the earth’s action on the
moon must have been enormous, and it must necessarily have soon brought her to
present the same face constantly to the earth. This explanation was, I believe, first
given by Hermuorrz. In the process, the inclination of her axis to the plane of her
orbit must have rapidly increased, and then, as she rotated more and more slowly,
must have slowly diminished again. Her present aspect is thus in strict accordance
with the results of the purely theoretical investigation.

It would perhaps be premature to undertake a complete review of the planetary
system, so as to see how far the ideas here developed accord with it. Although many
facts which could be adduced seem favourable to their acceptance, I will only refer
to two. The satellites of Mars appear to me a most remarkable confirmation of these
views. Their extreme minuteness has prevented them from being subject to any per-
ceptible tidal reaction, just as the minuteness of the earth compared with the sun has
prevented the earth’s orbit from being perceptibly influenced (see Section 19); they thus
remain as a standing memorial of the primitive periodic time of Mars round his axis.
Mars, on the other hand, has been subjected to solar tidal friction. This case, however,
deserves to be submitted to numerical calculation. :

The other case is that of Uranus, and this appears to be somewhat unfavourable to
the theory ; for on account of the supposed adverse revolution of the satellites, and of
the high inclinations of their orbits, it is not easy to believe that they could have

3z 2
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arisen from a planet which ever rotated about an axis at all nearly perpendicular to
the ecliptic.

~ The system of planets revolving round the sun present so strong a resemblance to the
systems of satellites revolving round the planets, that we are almost compelled to believe
that their modes of development have been somewhat alike. But in applying the
present theory to explain the orbits of the planets, we are met by the great difficulty
that the tidal reaction due to solar tides in the planet is exceedingly slow in its
influence ; and not much help is got by supposing the tides in the sun to react on
the planet. Thus enormous periods of time would have to be postulated for the
evolution.

If, however, this theory should be found to explain the greater part of the configura-
tions of the satellites round the planets, it would hardly be logical to refuse it some
amount of applicability to the planets. We should then have to suppose that before
the birth of the satellites the planets occupied very much larger volumes, and possessed
much more moment of momentum than they do now. If they did so, we should not
expect to trace back the positions of the axes of the planets to the state when they
were perpendicular to the ecliptic, as ought to be the case if the action of the satellites,
and of the sun after their birth, is alone concerned.

Whatever may be thought of the theory of the viscosity of the earth, and of the
large speculations to which it has given rise, the fact remains that nearly all the effects
which have been attributed to the action of bodily tides would also follow, though
probably at a somewhat less rapid rate, from the influence of oceanic tides on a rigid
nucleus. The effect of oceanic tidal friction on the obliquity of the ecliptic has already
been considered by Mr. STONE, in the only paper on the subject which I have yet
seen.* His argument is based on what I conceive to be an incorrect assumption as to
the nature of the tidal frictional couple, and he neglects tidal reaction ; he finds that
the effects would be quite insignificant. This result would, I think, be modified by a
more satisfactory assumption.

* Asgt. Soc. Monthly Notices, March 8, 1867.
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